Giant Perpendicular Magnetic Anisotropy of a Fe(001) Surface: A Density Functional Study

D. Odkhuu¹, S. H. Rhim^{1,2}, Won Seok Yun¹, and S. C. Hong^{1*}

¹Department of Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan 680 - 749, Korea ²Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208–3112, USA

ABSTRACT

We predict agigantic perpendicular magnetocrystalline anisotropy (MCA) in Fe (001) capped by 5d transition metal (TM) overlayers by using first principles calculations. Analysis of atom-by-atom contribution to MCA reveals that gigantic MCA as large as 11 meV/TM originates not from Fe atoms but from the 5d TMs through the strong spin-orbit coupling. More specifically, it is the hybridization between TM and Fe d orbitals that also induces non-negligible magnetic moments in TM. Furthermore, spin-channel decompositions of MCA matrix with and without the presence of Fe substrate identify the electronic origin of the perpendicular MCA that the down-down channel contribution plays the most crucial role for the sign changes of MCA of TM overlayers upon the hybridization with Fe-3d.

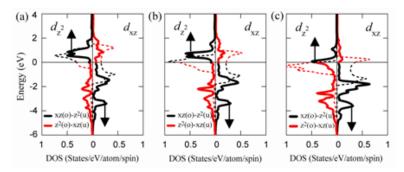


FIG. 1. The d_z^2 (the left side)- and $d_{xz/yz}$ (the right side)-projected minority spin DOS of (a) Os, (b) Ir, and (c) Ptatom of the free-standing TM ML's (thin dashed lines) and of TM/Fe(001) (thick solid lines).