• 제목/요약/키워드: Surface conductivity

검색결과 1,542건 처리시간 0.029초

Effect of water temperature and soil type on infiltration

  • Mina Torabi;Hamed Sarkardeh;S. Mohamad Mirhosseini;Mehrshad Samadi
    • Geomechanics and Engineering
    • /
    • 제32권4호
    • /
    • pp.445-452
    • /
    • 2023
  • Temperature is one of the important factors affecting the permeability of water in the soil. In the present study, the impact of water temperature on hydraulic conductivity (k) with and without coarse aggregations by considering six types of soils was analyzed. Moreover, the effect of sand and gravel presence in the soil was investigated through the infiltration based on constant and inconstant water head experiments. Results indicated that by increasing the water temperature, adding gravel to sandy soil caused the hydraulic conductivity to raise. It is supposed that the gravel decreased the contact surface between the water and the soil aggregates. It is deduced that due to decreasing kinetic energy, k tends to have lower values. Furthermore, adding the sand to sandy silt-clay soil showed that the sand did not have a marginal effect on the variation of k since the added sand cannot increase the contact surface like gravel. Finally, increasing the main diameter of the soil will increase the effect of the water temperature on hydraulic conductivity.

유도 결합 플라즈마 스퍼터 승화법을 이용한 고속증착 시스템 (High Rate Deposition System by Inductively Coupled Plasma Assisted Sputter-sublimation)

  • 최지성;주정훈
    • 한국표면공학회지
    • /
    • 제45권2호
    • /
    • pp.75-80
    • /
    • 2012
  • A sputter-sublimation source was tested for high rate deposition of protective coating of PEMFC(polymer electrolyte membrane fuel cell) with high electrical conductivity and anti-corrosion capability by DC biasing of a metal rod immersed in inductively coupled plasma. A SUS(stainless steel) tube, rod were tested for low thermal conductivity materials and copper for high thermal conductivity ones. At 10 mTorr of Ar ICP(inductively coupled plasma) with 2.4 MHz, 300 W, the surface temperature of a SUS rod reached to $1,289^{\circ}C$ with a dc bias of 150 W (-706 V, 0.21 A) in 2 mins. For 10 min of sputter-sublimation, 0.1 gr of SUS rod was sputter-sublimated which is a good evidence of a high rate deposition source. ICP is used for sputter-sublimation of a target material, for substrate pre-treatment, film quality improvement by high energy particle bombardment and reactive deposition.

$TiO_2$ 및 Ag 스퍼터링-$TiO_2$ 플라즈마 용사피막의 광전류 및 광분해 특성 (Photoelectrical Conductivity and Photodegradation Properties of $TiO_2$ and Ag Sputtered $TiO_2$ Plasma Spraying Coatings)

  • 강태구;장용호;박경채
    • Journal of Welding and Joining
    • /
    • 제27권2호
    • /
    • pp.38-43
    • /
    • 2009
  • In this study, we investigated photocatalytic ability of plasma sprayed $TiO_2$ and Ag sputtering $TiO_2$(Ag-$TiO_2$) coatings. A sputtering processes were adopted to coat the surface of $TiO_2$ with Ag(99.99%). Ag was sputtered at 10mA, 450V for $1{\sim}11$ seconds. $TiO_2$ and Ag-$TiO_2$ coatings were heat-treated at 250, 300, 350, $400^{\circ}C$ for $0{\sim}240$seconds. Photoelectrical conductivity was measured by four-point probe, and photodegradation was calculated by UV-V is spectrometer. Microstructure observation of $TiO_2$ and Ag-$TiO_2$ coatings were investigated by SEM. Crystal structure of $TiO_2$ and Ag-$TiO_2$ coatings were investigated by XRD. Qualitative analyses of $TiO_2$ and Ag-$TiO_2$ coatings were conducted by EDX. When $TiO_2$ coatings were heat-treated at $350^{\circ}C$ for 30 sec, photoelectrical conductivity and photodegradation were best. And in XRD analysis result, (101)/(110) relative intensity ratio of $TiO_2$(rutile) was comparably changed with photoelectrical conductivity. When Ag-$TiO_2$ coatings were heat-treated at $350^{\circ}C$ for 30 [sec] after sputtering Ag for 7 sec, Photoelectrical conductivity and photodegradation are best. Surface of coatings in such condition has very small and uniform Ag particles.

Thermal conductivity of individual single-crystalline Bi nanowires grown by stress-induced recrystallization

  • Roh, Jong-Wook;Chen, Ren-Kun;Lee, Jun-Min;Ham, Jin-Hee;Lee, Seung-Hyn;Hochbaum, Allon;Hippalgaonkar, Kedar;Yang, Pei-Dong;Majumdar, Arun;Kim, Woo-Chul;Lee, Woo-Young
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 춘계학술대회 논문집
    • /
    • pp.23-23
    • /
    • 2009
  • It has been challenging to increase the thermoelectric figure of merit ($ZT=S^2{\sigma}T/\kappa$) of materials, which determine the efficiency of thermoelectric devices, because the three parameters Seebeck coefficient (S), electrical conductivity ($\sigma$), and thermal conductivity ($\kappa$) of bulk materials are inter-dependent. With the development of nanotechnology, ZT values of nanostructured materials are predicted to be enhanced by classical size effects and quantum confinement effects. In particular, Bi nanowires were suggested as one of ideal thermoelectric materials due to the expected quantum confinement effects for the simultaneous increase in Sand. In this work, we have investigated the thermal conductivity of individual single crystalline Bi nanowires with d = 98 nm and d = 327 nm in the temperature range 40 - 300 K using MEMS devices. The for the Bi nanowire with d = 98 nm was observed to be ~ 1.6 W/m-K at 300 K, which is much lower than that of Bi bulk (8 W/m-K at 300 K). This indicates that the thermal conductivity of the Bi suppressed due to enhanced surface boundary scattering in one-dimensional structures. Our results suggest that Bi nanowires grown by stress-induced method can be used for high-efficiency thermoelectric devices.

  • PDF

고내상 에멀젼 중합법으로 제조한 폴리스티렌/탄소나노튜브 미세기공 발포체의 모폴로지 및 전기 전도도 (Morphology and Electrical Conductivity of Polystyrene/Carbon Nanotube Microcellular Foams Polymerized by High Internal Phase Emulsions)

  • 노원진;강명환;이성재
    • 폴리머
    • /
    • 제36권5호
    • /
    • pp.579-585
    • /
    • 2012
  • 고분자 발포체에 전도성을 부여하기 위하여 고내상 에멀젼 중합법을 활용하여 폴리스티렌/탄소나노튜브 미세기공 발포체를 제조하였다. 본 연구에서는 고내상 에멀젼의 안정성과 중합된 미세기공 발포체의 전기 전도도를 향상시키기 위하여 탄소나노튜브의 개질, 계면활성제의 함량 및 분산 시간에 따른 영향을 고찰하였다. 탄소나노튜브는 분산이 용이하도록, 분산상인 수상에는 산처리 및 계면활성제로 분산하여 사용하였고 연속상인 유상에는 유기 작용기로 표면 개질하여 사용하였다. 탄소나노튜브의 분산성은 제조한 발포체의 전기 전도도 차이로 확인할 수 있었다. 계면활성제로 분산한 미처리 탄소나노튜브를 수상에 첨가한 경우 전기 전도도 향상에는 효과적이었지만 약간 수축된 형상의 발포체가 제조되었다. 유기 개질한 탄소나노튜브를 유상에 첨가한 경우 안정한 발포체를 얻을 수 있었으나 전기 전도도 향상에는 한계가 있었다.

무전해 니켈도금된 다중벽 탄소나노튜브의 첨가가 알루미나강화 에폭시 복합재료의 열전도도 및 파괴인성에 미치는 영향 (Influence of Electroless Ni-plated MWCNTs on Thermal Conductivity and Fracture Toughness of MWCNTs/Al2O3/Epoxy Composites)

  • 최정란;이영실;박수진
    • 폴리머
    • /
    • 제37권4호
    • /
    • pp.449-454
    • /
    • 2013
  • 본 연구에서는 무전해 니켈도금에 따른 탄소나노튜브의 표면특성변화가 알루미나강화 에폭시 복합재료의 열전도도 및 파괴인성에 미치는 영향에 대하여 살펴보았다. 무전해 니켈도금된 탄소나노튜브의 표면특성은 주사전자현미경(SEM), X-선 광전자분광기(XPS), X-선 회절분석(XRD)을 통하여 알아보았다. 열전도도는 열전도율 측정 시스템으로 측정하였고, 파괴인성은 만능시험기(UTM)를 이용한 임계응력세기인자($K_{IC}$)를 측정하여 분석하였다. 실험결과, 무전해 니켈도금은 탄소나노튜브의 표면특성의 변화를 가져오며, 니켈도금된 MWCNTs(Ni-MWCNTs)가 들어있는 경우 미처리 MWCNTs와 비교하여 우수한 열전도도 및 파괴인성을 보였다. 이는 Ni-MWCNTs와 에폭시수지와의 분자간 상호작용의 향상 때문이라 판단된다.

van der Pauw method를 이용한 금속도전율 표준시편 개발 (Development of Conductivity Standards for Metals using the van der Pauw Method)

  • 강전홍;유광민;이상화
    • 전기학회논문지
    • /
    • 제62권11호
    • /
    • pp.1617-1620
    • /
    • 2013
  • The widely-used measurement methods for conductivity of non-magnetic metals are van der Pauw method, Two Point Probe method and Eddy Current method. Among them a more simpler and easier method is the Eddy Current method and an instrument using the method is a Conductivity Meter which can measure a conductivity by contacting its probe on a sample surface. However, conductivity standards are essentially needed to confirm the meter's performance or to calibrate it. In this study, six kinds of the standards which are made of Cu, Al-1, Al-2, brass, Zn and SUS-316 are developed and conductivity ranges for the standards are 2.27 %IACS ~ 101.6 %IACS with measurement uncertainty of less than 0.3 %.

V2O5/TiO2 촉매의 선택적 환원촉매반응에서 격자산소의 역할 (The Role of Lattice Oxygen in the Selective Catalytic Reduction of NOx on V2O5/TiO2 Catalysts)

  • 하헌필;최희락
    • 한국재료학회지
    • /
    • 제16권5호
    • /
    • pp.323-328
    • /
    • 2006
  • In situ electrical conductivity measurements on $V_2O_5WO_3/TiO_2$ catalysts were carried out at between 100 and $300^{\circ}C$ under pure oxygen, NO and $NH_3$ to investigate the reaction mechanism for ammonia SCR (selective catalytic reduction) de NOX. The electrical conductivity of catalysts changed irregularly with supply of NO. It was, however, found that the electrical conductivity change with ammonia supply was regular and the increase of electrical conductivity was mainly caused by reduction of the labile surface oxygen. The electrical conductivity change of catalysts showed close relationship with the conversion rate of NOx. Variation of conversion rate in atmosphere without gaseous oxygen also showed that labile lattice oxygen is indispensable in the initial stage of the de NOx reaction. These results suggest that liable lattice oxygen acts decisive role in the de NOx mechanism. They also support that de NOx reaction occurs through the Eley?Rideal type mechanism. The amount of labile oxygen can be estimated from the measurement of electrical conductivity change for catalysts with ammonia supply. This suggests that measurement of the change can be used as a measure of the de NOx performance.