DOI QR코드

DOI QR Code

Morphology and Electrical Conductivity of Polystyrene/Carbon Nanotube Microcellular Foams Polymerized by High Internal Phase Emulsions

고내상 에멀젼 중합법으로 제조한 폴리스티렌/탄소나노튜브 미세기공 발포체의 모폴로지 및 전기 전도도

  • Noh, Won-Jin (Department of Polymer Engineering, The University of Suwon) ;
  • Kang, Myung-Hwan (Department of Polymer Engineering, The University of Suwon) ;
  • Lee, Seong-Jae (Department of Polymer Engineering, The University of Suwon)
  • 노원진 (수원대학교 공과대학 신소재공학과) ;
  • 강명환 (수원대학교 공과대학 신소재공학과) ;
  • 이성재 (수원대학교 공과대학 신소재공학과)
  • Received : 2012.01.21
  • Accepted : 2012.04.06
  • Published : 2012.09.25

Abstract

Polystyrene/carbon nanotube (CNT) microcellular foams were prepared to have electrically conductive properties via high internal phase emulsion polymerization. In this study, we have investigated the effects of surface modification of CNT, surfactant content and dispersion time to improve the stability of emulsion and the electrical conductivity of foam. Acid treatment and a surfactant were used to effectively disperse CNTs in the aqueous phase. In the organic phase, CNTs were used after a surface modification with organic functional groups. The degree of dispersion of CNTs was estimated by the electrical conductivity of resultant microcellular foams. With raw CNTs dispersed with the surfactant in the aqueous phase, substantial conductivity increase was observed but the foams were slightly shrunk. The foams prepared with organically modified CNTs dispersed in the organic phase showed stable cell morphology without shrinkage, but displayed limitation to improve the conductivity.

고분자 발포체에 전도성을 부여하기 위하여 고내상 에멀젼 중합법을 활용하여 폴리스티렌/탄소나노튜브 미세기공 발포체를 제조하였다. 본 연구에서는 고내상 에멀젼의 안정성과 중합된 미세기공 발포체의 전기 전도도를 향상시키기 위하여 탄소나노튜브의 개질, 계면활성제의 함량 및 분산 시간에 따른 영향을 고찰하였다. 탄소나노튜브는 분산이 용이하도록, 분산상인 수상에는 산처리 및 계면활성제로 분산하여 사용하였고 연속상인 유상에는 유기 작용기로 표면 개질하여 사용하였다. 탄소나노튜브의 분산성은 제조한 발포체의 전기 전도도 차이로 확인할 수 있었다. 계면활성제로 분산한 미처리 탄소나노튜브를 수상에 첨가한 경우 전기 전도도 향상에는 효과적이었지만 약간 수축된 형상의 발포체가 제조되었다. 유기 개질한 탄소나노튜브를 유상에 첨가한 경우 안정한 발포체를 얻을 수 있었으나 전기 전도도 향상에는 한계가 있었다.

Keywords

Acknowledgement

Supported by : 한국연구재단(NRF)

References

  1. N. R. Cameron and D. C. Sherrington, Adv. Polym. Sci., 126, 163 (1996). https://doi.org/10.1007/3-540-60484-7_4
  2. Z. Bhumgara, Filtration Separation, 32, 245 (1995). https://doi.org/10.1016/S0015-1882(97)84048-7
  3. P. Krajnc, D. Stefanec, J. F. Brown, and N. R. Cameron, J. Polym. Sci. Part A: Polym. Chem., 43, 296 (2005). https://doi.org/10.1002/pola.20501
  4. E. Ruckenstein and X. B. Wang, Biotechnol. Bioeng., 44, 79 (1994). https://doi.org/10.1002/bit.260440112
  5. S. J. Pierre, J. C. Thies, A. Dureault, N. R. Cameron, J. C. M. van Hest, N. Carette, T. Michon, and R. Weberskirch, Adv. Mater., 18, 1822 (2006). https://doi.org/10.1002/adma.200600293
  6. R. J. Wakeman, Z. G. Bhumgara, and G. Akay, Chem. Eng. J., 70, 133 (1998). https://doi.org/10.1016/S0923-0467(98)00088-8
  7. M. A. Bokhari, G. Akay, S. G. Zhang, and M. A. Birch, Biomaterials, 26, 5198 (2005). https://doi.org/10.1016/j.biomaterials.2005.01.040
  8. M. S. Silverstein, H. Tai, A. Sergienko, Y. Lumelsky, and S. Pavlovsky, Polymer, 46, 6682 (2005). https://doi.org/10.1016/j.polymer.2005.05.022
  9. M. C. Hermant, M. Verhulst, A. V. Kyrylyuk, B. Klumperman, and C. E. Koning, Comp. Sci. Tech., 69, 656 (2009). https://doi.org/10.1016/j.compscitech.2008.12.013
  10. P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, Science, 265, 1212 (1994). https://doi.org/10.1126/science.265.5176.1212
  11. M. Moniruzzaman and K. I. Winey, Macromolecules, 39, 5194 (2006). https://doi.org/10.1021/ma060733p
  12. Z. Zhang, J. Zhang, P. Chen, B. Zhang, J. He, and G. H. Hu, Carbon, 44, 692 (2006). https://doi.org/10.1016/j.carbon.2005.09.027
  13. H. J. Barraza, F. Pompeo, A. O'Rear, and D. E. Resasco, Nano Lett., 2, 797 (2002). https://doi.org/10.1021/nl0256208
  14. Z. Yao, N. Braidy, G. A. Botton, and A. Adronov, J. Am. Chem. Soc., 125, 16015 (2003). https://doi.org/10.1021/ja037564y
  15. J. Y. Shin, T. Premkumar, and K. E. Geckeler, Chem. Eur. J., 14, 6044 (2008). https://doi.org/10.1002/chem.200800357
  16. S. Bose, R. A. Khare, and P. Moldenaers, Polymer, 51, 975 (2010). https://doi.org/10.1016/j.polymer.2010.01.044
  17. C. A. Martin, J. K. W. Sandler, A. H. Windle, M. K. Schwarz, W. Bauhofer, K. Schulte, and M. S. P. Shaffer, Polymer, 46, 877 (2005). https://doi.org/10.1016/j.polymer.2004.11.081
  18. A. B. Sulong, C. H. Azhari, R. Zulkifli, M. R. Othman, and J. Park, Eur. J. Scientific Res., 33, 295 (2009).
  19. Y. Wang, J. Wu, and F. Wei, Carbon, 41, 2939 (2003). https://doi.org/10.1016/S0008-6223(03)00390-7
  20. S. Porro, S. Musso, M. Vinante, L. Vanzetti, M. Anderle, F. Trotta, and A. Tagliaferro, Physica E, 37, 58 (2007). https://doi.org/10.1016/j.physe.2006.07.014
  21. H. T. Ham, C. M. Koo, S. O. Kim, Y. S. Choi, and I. J. Chung, Macromol. Res., 12, 384 (2004). https://doi.org/10.1007/BF03218416
  22. I. H. Song, B. C. Kim, and S. J. Lee, Polymer(Korea), 32, 183 (2008).
  23. G. Hu, C. Zhao, S. Zhang, M. Yang, and Z. Wang, Polymer, 47, 480 (2006). https://doi.org/10.1016/j.polymer.2005.11.028
  24. C. Zhao, L. Ji, H. Liu, G. Hu, S. Zhang, M. Yang, and Z. Yang, J. Solid State Chem., 177, 4394 (2004). https://doi.org/10.1016/j.jssc.2004.09.036
  25. D. B. Mawhinney, V. Naumenko, A. Kuznetsova, J. T. Yates, J. Liu, and R. E. Smalley, J. Am. Chem. Soc., 122, 2383 (2000). https://doi.org/10.1021/ja994094s
  26. P. Chingombe, B. Saha, and R. J. Wakeman, Carbon, 43, 3132 (2005). https://doi.org/10.1016/j.carbon.2005.06.021
  27. H. P. Grace, Chem. Eng. Commun., 14, 225 (1982). https://doi.org/10.1080/00986448208911047
  28. S. J. Lee, Korea-Australia Rheol. J., 18, 183 (2006).
  29. J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, and A. H. Windle, Polymer, 44, 5893 (2003). https://doi.org/10.1016/S0032-3861(03)00539-1

Cited by

  1. Effect of Incorporation of Multiwalled Carbon Nanotubes on the Microstructure and Flow Behavior of Highly Concentrated Emulsions vol.3, pp.10, 2012, https://doi.org/10.1021/acsomega.8b00579