• Title/Summary/Keyword: Surface concentration

Search Result 6,117, Processing Time 0.03 seconds

Relative Microalgal Concentration in Prydz Bay, East Antarctica during Late Austral Summer, 2006

  • Mohan, Rahul;Shukla, Sunil Kumar;Anilkumar, N.;Sudhakar, M.;Prakash, Satya;Ramesh, R.
    • ALGAE
    • /
    • v.24 no.3
    • /
    • pp.139-147
    • /
    • 2009
  • Microalgae using a submersible fluorescence probe in water column (up to 100 m) were measured during the austral summer of 2006 (February) in Prydz Bay, East Antarctica (triangular-shaped embayment in the Indian sector of Southern Ocean). Concurrently, environmental parameters such as temperature, salinity and nitrogen (nitrate, ammonium, urea) uptake rates were measured. The concentration of phytoplankton is relatively high due to availability of high nutrients and low sea surface temperature. Phytoplankton community is dominated by diatoms whereas cryptophytes are in low concentration. The maximum concentration of total chlorophyll is 14.87 ${\mu}g\;L^{-1}$ and is attributed to upwelled subsurface winter water due to local wind forcing, availability of micro-nutrients and increased attenuation of photosynthetically available radiation (PAR). Concentration of blue-green algae is low compared to that of green algae because of low temperature. Comparatively high concentration of yellow substances is due to the influence of Antarctic melt-water whereas cryptophytes are low due to high salinity and mixed water column. Varied concentrations of phytoplankton at different times of Fluoroprobe measurements suggest that the coastal waters of Prydz Bay are influenced by changing sub-surface water temperature and salinity due to subsurface upwelling induced by local winds as also melting/freezing processes in late summer. The productivity is high in coastal water due to the input of macro as well as micro-nutrients.

Kinetic Analysis of the Hepatic Uptake and Biliary Excretion of 1-Anilino-8-Naphthalene Sulfonate (ANS) in Vivo (In Vivo 레벨에서 1-아닐리노-8-나프탈렌 설포네이트(ANS)의 간내 이행 및 담즙배설 과정의 속도론적 해석)

  • Bae, Woong-Tak;Chung, Youn-Bok;Han, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.4
    • /
    • pp.209-216
    • /
    • 2001
  • The purpose of the present study was to investigate the hepatic uptake and biliary excretion of l-anilino-8-naphthalene sulfonate (ANS) in vivo. The plasma concentration and liver concentration of ANS were determined after its i.v. bolus administration at a dose of $30\;{\mu}mol/kg$ in rats. The hepatic uptake clearance $(CL_{uptake})$ of ANS was 0.1 ml/min/g liver. On the basis of the unbound concentration of ANS, the permeability-surface area product $(PS_{influx})$ was calculated to be l0.4 ml/min/g liver, being comparable of in vitro data. On the other hand, we determined the plasma concentration, liver concentration and biliary excretion rate of ANS at steady-state after its i. v. infusion $(0.2-1.6\;{\mu}mol/min/kg)$ in rats. The excretion clearance $(CL_{excretion})$ of ANS showed Michaelis-Menten kinetics with increasing the infusion rate. The permeability-surface area product $(PS_{excretion})$ based on the unbound concentration in the liver was calculated to be 0.0165 ml/min/g liver, which is negligible compared with the intrinsic clearance $(CL_{int}=3.3\;ml/min/g\;liver)$ by rat liver microsomes. The sequestration process of ANS, therefore, was considered to be mainly due to the metabolic process in the liver $(PS_{seq}{\risingdotseq}CL_{int})$. Furthermore, $PS_{efflux}$ value calculated from $PS_{influx}$ and $PS_{seq}$ was 4.4 ml/min/g liver, which was comparable of in vitro data. In conclusion, in vivo parameters such as $PS_{influx}$, $PS_{efflux}$ and $PS_{seq}$ in the present study showed good in vivo-in vitro relationship. Thus, the kinetic analysis method proposed in the present study would be useful to analyze the hepatic transport of drugs in vivo.

  • PDF

Optimization of Submerged Culture Conditions for the Production of Ginseng Root Using Response Surface Method (반응표면분석법을 이용한 인삼 Root 액체배양조건의 최적화)

  • 오훈일;장은정;이시경;박동기
    • Journal of Ginseng Research
    • /
    • v.24 no.2
    • /
    • pp.58-63
    • /
    • 2000
  • To develop the production of ginseng root using plant tissue culture technology, submerged culture conditions were optimized by means of the fractional factorial design with 4 factors and 3 levels by a RSM computer program. The ginseng (Panax ginseng C. A. Meyer) roots induced by plant growth regulators were cultured on SH medium and the effects of various pH of medium, sucrose concentration, nitrogen concentration and phosphate concentration on fresh weight of the ginseng root were investigated. The fresh weight of ginseng root increased with a decrease in nitrogen concentration and fresh weight of ginseng root varied from 1.00 to 2.33g under various conditions. The optimum pH of medium and sucrose concentration determined by a partial differentiation of the model equation, nitrogen and phosphate concentration were pH 5.6, sucrose 3.8%, nitrogen 50 mg/L and phosphate 80.7 mg/L, respectively. Under these conditions, the predicted growth of ginseng root was estimated to be 2.36g.

  • PDF

Characteristics of Cyanobacteria and Odorous Compounds Production in Lake Uiam and Lower Gonji Stream (의암호와 공지천 하류에서 남조류와 냄새물질의 발생 특징)

  • Youn, Seok Jea;Im, Jong Kwon;Byeon, Myeong-Seop;Yu, Soon Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.2
    • /
    • pp.99-104
    • /
    • 2019
  • The objective of this study was to investigate the relationship between the biomass of cyanobacteria and the concentration of 2-methylisoborneol (2-MIB) in the lower Gongji stream. The investigation was done using a field study that was conducted from 2015 to 2017. The 2-MIB concentration in the lower Gongji stream ranged from 0 to 153 ng/L, while the upper stream had 0 2-MIB concentration. 3 genera (Oscillatoria, Phormidium, Pseudanabaena) of cyanobacteria were detected in the lower Gongji stream with 2-MIB concentration. Among these 3 genera, an increase in Phormidium, Pseudanabaena biomass was associated with an increase in 2-MIB concentration. Accordingly, Phormidium, Pseudanabaena were regarded as the biological source of 2-MIB in that area. In October 2017, although planktonic cyanobacteria occurred less frequently, many benthic cyanobacteria mats were observed on the surface of the water body. Therefore, the high 2-MIB concentration, which exceeded 110 ng/L, can likely be attributed to the benthic cyanobacteria. In a laboratory experiment, individual Oscillatoria filaments were aggregated to form a colony with a higher density. This colony tended to float on the water surface. Cyanobacteria mats after floating aggregated mats were distributed in a net shape on the bottom.

Studies on the Adsorption Modeling of Cationic Heavy Metals(Pb, Cd) by the Surface Complexation Model (Surface Complexation Model을 이용한 양이온 중금속(Pb, Cd) 흡착반응의 모델화 연구)

  • 신용일;박상원
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.211-219
    • /
    • 1999
  • Surface complexation models(SCMs) have been performed to predict metal ion adsorption behavior onto the mineral surface. Application of SCMs, however, requires a self-consistent approach to determine model parameter values. In this paper, in order to determine the metal ion adsorption parameters for the triple layer model(TLM) version of the SCM, we used the zeta potential data for Zeolite and Kaolinite, and the metal ion adsorption data for Pb(II) and Cd(II). Fitting parameters determined for the modeling were as follows ; total site concentration, site density, specific surface area, surface acidity constants, etc. Zeta potential as a new approach other than the acidic-alkalimetric titration method was adopted for simulation of adsorption phenomena. Some fitting parameters were determined by the trial and error method. Modeling approach was successful in quantitatively simulating adsorption behavior under various geochemical conditions.

  • PDF

The Surface Tension Components of Mixed Surfactant Solutions (혼합계면활성제 용액의 표면장력 성분)

  • 정혜원;윤혜신
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.4
    • /
    • pp.690-696
    • /
    • 1996
  • In order to study the affect of surfactants on the soil removal, the dispersion and polar force components of surface tension for surfactant solutions (such as LAS, AS, AOS, AES, AE) were calculated using extended Fowkes equation. The contact angles on paraffin and surface tension of surfactant solutions were measured. Cmcs of LAS, AS, AES and AE were below the concentration of 0.05%, but the cmc of AOS was between 0.05% and 0.1%. The surface tension of AE was lowest but the dispersion force component was greastest. Total surface tension of every mixed anionic surfactant was lower than that of single surfactants, and the dispersion force components were almost decreased. The addition of sodium carbonate to the sufactant solutions decreased the surface tension, and the surface tensions of surfactant solutions were lowered after washing.

  • PDF

IMPERVIOUS SURFACE ESTIMATION USING REMOTE SENSING IMAGES AND TREE REGRESSIOIN

  • Kim, Soo-Young;Kim, Jong-Hong;Heo, Joon;Heo, Jun-Haeng
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.239-242
    • /
    • 2006
  • Impervious surface is an important index for the estimation of urbanization and environmental change. In addition, impervious surface has an influence on the parameters of rainfall-runoff model during rainy season. The increase of impervious surface causes peak discharge increasing and fast concentration time in urban area. Accordingly, impervious surface estimation is an important factor of urban rainfall-runoff model development and calibration. In this study, impervious surface estimation is performed by using remote sensing images such as landsat-7 ETM+ and high resolution satellite image and regression tree algorithm based on case study area ? Jungnang-cheon basin in Korea.

  • PDF

Effect of Concentration of Polyacrylic Acid and Sulfate ion on the Cystal growth - A Topographic Study (법랑질표면에서 폴리아크릴산용액 농도와 황산이온 농도가 결정형성에 미치는 영향)

  • Kim, Joo-Hyung;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.28 no.5 s.70
    • /
    • pp.877-891
    • /
    • 1998
  • This study was designed to observe the effects of various concentration of polyacrylic acid containing different concentration of sulfate ion on the crystal formation on the enamel surface. Experimental crystal growth solutions were made of $10\%,\;20\%,\;30\%\;and\;40\%$ polyacrylic acid(molecular weight,5,000) solutions which containing 0.1M, 0.2M, 0.3M, 0.5M, and 1.0M sulfate ion respectively. The extracted human first bicuspid enamel surface was contacted for n seconds with these solutions, washed for 15 seconds, dried, and then the crystal topography on the enamel surface was observed under the scanning electron microscope. The crystal topography were evaluated on the SEM photographs by degree of crystal coverage, crystal length, and consistency of crystal morphology, and conclusions were as the follows. 1. Polyacrylic acid solution etched slightly the enamel surface, and the difference of etching effect by its concentration was not observed. 2. The effect of concentration of polyacrylic acid on the crystal formation was less, especially that of $20\%\~40\%$ polyacrylic acid was almost not different. 3. Concentration of the sulfate ion was a determinant factor in precipitating crystals on the enamel. The experimental crystal growth solutions containing 0.1 M sulfate ion did not make crystal formation but those containing over 0.2 M sulfate ion did. 4. The degree of crystal coverage showed a tendency to increase and then decrease according to the concentration of sulfate ion in the $20\%-40\%$ polyacrylic acid. The experimental solutions containing 0.5 M sulfate ion showed the peak of degree of crystal coverage. 5. The crystal length showed a tendency to decrease by increment of sulfate ion in the polyacrylic acid solution. 6. There was a tendency to increase the frequency of random arragement of short crystals when increasing the concentration of sulfate ion in the polyacrylic acid solution. The lower concentration of sulfate ion in the polyacrylic acid solutions tended to make spherulitic arrangement of crystals, the higher concentration of sulfate ion, the more random arrangement of crystals. The experimental solutions containing 0.5M sulfate ion showed more spherulitic arrangement than random arrangement of crystals. 7. The best one of these experimental crystal growth solutions was $30\%$ polyacrylic acid solution containing 0.5M sulfate ion.

  • PDF

Physicochemical Characteristics and Carbon Dioxide Absorption Capacities of Alkali-activated Blast-furnace Slag Paste (알칼리 활성화된 고로슬래그 페이스트의 물리화학적 특성 및 이산화탄소 흡수능 평가)

  • Ahn, Hae Young;Park, Cheol Woo;Park, Hee Mun;Song, Ji Hyeon
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.99-105
    • /
    • 2015
  • PURPOSES: In this study, alkali-activated blast-furnace slag (AABFS) was investigated to determine its capacity to absorb carbon dioxide and to demonstrate the feasibility of its use as an alternative to ordinary Portland cement (OPC). In addition, this study was performed to evaluate the influence of the alkali-activator concentration on the absorption capacity and physicochemical characteristics. METHODS: To determine the characteristics of the AABFS as a function of the activator concentration, blast-furnace slag was activated by using calcium hydroxide at mass ratios ranging from 6 to 24%. The AABFS pastes were used to evaluate the carbon dioxide absorption capacity and rate, while the OPC paste was tested under the same conditions for comparison. The changes in the surface morphology and chemical composition before and after the carbon dioxide absorption were analyzed by using SEM and XRF. RESULTS: At an activator concentration of 24%, the AABFS absorbed approximately 42g of carbon dioxide per mass of paste. Meanwhile, the amount of carbon dioxide absorbed onto the OPC was minimal at the same activator concentration, indicating that the AABFS actively absorbed carbon dioxide as a result of the carbonation reaction on its surface. However, the carbon dioxide absorption capacity and rate decreased as the activator concentration increased, because a high concentration of the activator promoted a hydration reaction and formed a dense internal structure, which was confirmed by SEM analysis. The results of the XRF analyses showed that the CaO ratio increased after the carbon dioxide absorption. CONCLUSIONS : The experimental results confirmed that the AABFS was capable of absorbing large amounts of carbon dioxide, suggesting that it can be used as a dry absorbent for carbon capture and sequestration and as a feasible alternative to OPC. In the formation of AABFS, the activator concentration affected the hydration reaction and changed the surface and internal structure, resulting in changes to the carbon dioxide absorption capacity and rate. Accordingly, the activator ratio should be carefully selected to enhance not only the carbon capture capacity but also the physicochemical characteristics of the geopolymer.

Optimization of Ethanol Extraction Conditions from Propolis (a Bee Product) Using Response Surface Methodology (반응표면분석법을 이용한 프로폴리스의 에탄올 추출조건 최적화)

  • Kim, Seong-Ho;Kim, In-Ho;Kang, Bok-Hee;Lee, Kyung-Hee;Lee, Sang-Han;Lee, Dong-Sun;Cho, So-Mi K.;Hur, Sang-Sun;Kwon, Taeg-Kyu;Lee, Jin-Man
    • Food Science and Preservation
    • /
    • v.16 no.6
    • /
    • pp.908-914
    • /
    • 2009
  • A central composite design was used to optimize extraction of propolis materials using ethanol. The independent variables in extraction experiments were ethanol concentration (50, 60, 70, 80, 90%, v/v) and extraction time (1, 2, 3, 4, and 5 h). Higher ethanol concentration and shorter extraction time increased total polyphenol content, but total polyphenol concentration began to decrease when ethanol concentration was higher than 80% (v/v). Ethanol concentration was more important than extraction time in optimization of total polyphenol content in propolis extracts. Electron-donating ability increased with ethanol concentration and shorter extraction time, with ethanol concentration being of greater significance. Antioxidant ability in extracts was optimal at an ethanol concentration of 65 - 75% and with an extraction time of 2.2 - 3.6 h. Nitrite-scavenging ability was increased with use of higher ethanol concentration and shorter extraction time. Total flavonoid content was maximized with an ethanol concentration of 68 - 82% and an extraction time of 2.4 - 3.7 h. Total flavonoid content was affected by both ethanol concentration and extraction time. By superimposition of contour plots, an ethanol concentration of 72 - 82% and an extraction time of 2.2 - 3.3 h were optimal for preparation of propolis extracts.