• Title/Summary/Keyword: Surface concentration

Search Result 6,117, Processing Time 0.035 seconds

Monitoring Airborne Nanoparticle Concentrations by Task in a Laboratory Making Carbon Nanotube Films (탄소나노튜브 필름 제조 실험실의 세부작업별 공기 중 나노입자 노출 농도)

  • Ha, Ju-Hyun;Shin, Yong-Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.4
    • /
    • pp.248-255
    • /
    • 2010
  • Airborne nanoparticle concentrations in three metrics (particle surface area concentration, particle number concentration, and particle mass concentrations) were measured by task in a laboratory making carbon nanotubes (CNTs) films using three direct reading instruments. Because of the conducted other researcher's experiment before the tasks, airborne nanoparticle surface area and number concentrations are the highest at the first time conducted weighing and mixing by sonication task, respectively. Because of the mist generated during mixing by sonication, the highest airborne nanoparticle surface area and PM1 concentrations were measured in the task among the total. Nanoparticle surface area concentrations at the researchers' breathing zones had high correlation (r=0.93, p<0.01) with those measured at an area in the laboratory. This result indicates that nanoparticles generated during the experiment contaminated the whole room air. When the experiment performed all the fume hoods weren't operated and making CNTs films task were conducted in the out of the fume hoods. In conclusion, researchers performing making CNTs film experiments were exposed to airborne nanoparticles generated during the experiment without adequate controls. We recommend that adequate controls should be implemented so that workers' exposures to airborne nanoparticle are limited to minimum levels.

Chemical Mechanical Polishing of Aluminum Thin Films (알루미늄 박막의 화학기계적연마 가공에 관한 연구)

  • Cho, Woong;Ahn, Yoo-Min;Baek, Chang-Wook;Kim, Yong-Kweon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.49-57
    • /
    • 2002
  • The effect of mechanical parameters on chemical mechanical polishing (CMP) of blanket and patterned aluminum thin films are investigated. CMP process experiments are conducted using the soft pad and the slurry mainly composed of acid solution and A1$_2$O$_3$ abrasive. The result for the blanket film showed that as the concentration of abrasive in slurry is increased, the surface roughness gets worse but the waviness gets better. The planarity of the patterned Al films is slowly improved by CMP when the width of and gap between the patterns are relatively small. It is tried to find the optimized CMP process conditions by that the patterned Al thin film can be planarized with fine surface. The most satisfiable film surface is obtained when the applied pressure is low (10kPa) and the abrasive concentration is relatively high (5wt%).

Effect of Thiourea on the Copper Electrodeposition (구리 전기 도금에 Thiourea가 미치는 효과)

  • Lee, Joo-Yul;Yim, Seong-Bong;Hwang, Yang-Jin;Lee, Kyu-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.289-296
    • /
    • 2010
  • The effect of organic additives, thiourea (TU), on the copper electroplated layer of large rectangular size was investigated through physical and various electrochemical techniques. It was found that TU had strong adsorption characteristics on the Ni substrate and affected the initial electroplating process by inducing surface reaction instead of mass transfer in the bulk solution. TU additives had its critical micelle concentration at 200 ppm in copper sulphate solution and showed abrupt change in morphological and electrochemical impedance spectroscopic results around this concentration, which could be related with the destruction of adsorption structure of TU-Cu(I) complex formed at the Ni substrate surface. By conducting a commercial electroplating simulation, when TU additives was included at cmc in the plating solution, it acted as a depolarizer for copper electrodeposition and was effective to reduce the unevenness of copper deposits between centre and edge region at high current densities of 10 ASD.

Surface Activities of Carboxybetaine Derivatives (카르복시베타인 유도체(誘導體)의 계면활성(界面活性))

  • Shon, Joo-Hwan;Kim, Yu-Ok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.43-48
    • /
    • 1987
  • Isoelectric point and surface tension of twelve of the alkylcarboxy betaines such as 2-(trimethylammonio) dodecanoate, 2-(trimethyammonio) tetradecanoate, 2-(trimethylammonio) hexadecanoate, (dimethyldodecylammonio)ethanoate, (dimethyltetradecylammonio)ethanoate, (dimethylhexadecylammonio) ehtanoate, 2-(dimethylododecylammonio) propanoate, 2-(dimethyltetradecylammonio)proopanoate, 2-(dimethylhexadecylammonio)propanoate, 2-(dimethyltetradecylammonio)-3-phenyl propanoate, 2-(dimethyltetradecylammonio)-3-phenyl propanoate are tested. From the measurement of the isoelectric point, it was found that the isoelectric point were leaned toward the alkaline zone for c-alkylarbrxybetaines, and toward the acidic zone for N-alkylcarboxybetaines. At the range of the carboxybetaine concentration $2\;{\times}\;10^{-2}{\sim}2\;{\times}\;10^{-5}$mole/l, the surface tension of the aqueous solution were decreased to 30-38 dyne/cm, showing the tendency that the ability of lowering the surafce tension was depending on the increase of carbon atom number in the lipophilic alkyl chain. The critical micelle concetration measured by the surface tension and concentration curves have been found at the range of $10^{-2}{\sim}10^{-5}$mole/l.

Study on Adsoption Characteristics of Tharonil on Activated Carbon Fixed Bed (활성탄 고정층에 대한 Tharonil의 흡착특성에 관한 연구)

  • Lee, Jong-Jip;Yu, Yong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.54-60
    • /
    • 2002
  • To obtain the breakthrough characteristics for the design of fixed bed adsorption plant, adsorption experiment on granular activated carbon was performed with tharonil in the fixed bed. The pore diffusivity and surface diffusivity of tharonil estimated by the concentration-time curve and adsorption isotherm were $D_s=2.825{\times}10^{-9}cm^2/s,\;D_p=1.26{\times}10^{-5}cm^2/s$, respectively. From comparison of the pore diffusivity and surface diffusivity, it was found that surface diffusion was controlling step for intrapaticle diffusion. The breakthrough curve predicted by constant pattern-linear driving force model were shown to agree with the experimental results. The surface diffusivity and film mass transfer coefficient had no effect on the theoretical breakthrough curve but the adsorption isotherm had fairly influence on it. Appearance time of breakthrough curve is faster with the increase flow rate and inflow concentration of liquid. The utility of granular activated carbon is enhanced with the increase of bed height and with the decrease of inflow rate.

Electrical and NO Conversion Characteristics of Dielectric Barrier Discharge Process (질소산화물 제거를 위한 무성 방전 공정의 전기 및 NO 전환 특성)

  • Lee, Yong-Hwan;Jeong, Jae-U;Jo, Mu-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.1
    • /
    • pp.15-21
    • /
    • 2002
  • We investigated effects of electrical, physical, and chemical parameters on energy transfer, NO conversion, and light emission in the dielectric barrier discharge (DBD) process. As gap distance between electrodes increased, discharge onset voltage increased. However, as gap distance between electrodes increased, electric field which initiates discharge showed approximately the same value, 30kV/cm. The discharge onset voltage of the coarse surface electrode was lower than that of the smooth surface electrode. And, energy transfer was slightly enhanced in the coarse electrode condition. However, NO conversion rate decreased with the coarse surface electrode because more uniform discharge can be obtained on the smooth surface electrode. The NO conversion rate increased with decreasing the initial concentration, so the DBD process is more feasible in the lower concentration condition. The variation of gas residence time tested at the same energy density in the experiment did not affect on the NO conversion. The result shows that the NO conversion rate mainly depends on the energy density. The DBD process is able to adjust on plasma-photocatalyst process because it emits the short wavelength light in the range of ultraviolet. The intensity of light emission increased with the increase of the energy transfer to the reactor and the gas flow rate.

Separation of Alcohol/water Mixtures with Surface-modified Alumina Membrane in Vapor Permeation (표면개질 알루미나막의 증기투과에 의한 알코올의 분리)

  • 이상인;오한기;이광래
    • Membrane Journal
    • /
    • v.10 no.3
    • /
    • pp.121-129
    • /
    • 2000
  • The membrane requires both high in selectivity and flux. However, the permselective membrane has low flux. In this study, the porous alumina membrane was coated with silane coupling agent in order to enhance the flux with proper selectivity. The contact angle of water to the surface-modified alumina membrane was greater than 90$^{\circ}$, which indicated the high hydrophobicity. The modified membrane was tested in vapor permeation for the concentration of aqueous ethanol, isopropanol, and n-butanol. With the increase of ethanol, isopropanol, butanol concentration in the feed, permeation flux increased due to the greater affinity of ethanol, isopropanol, butanol with surface-modified alumina membrane than that of water. The experimental results showed that the permeation tate of surface-modified alumina membrane was 20~1000 times greater than that of a polymer membranes.

  • PDF

Effects of Chemical and Abrasive Particles for the Removal Rate and Surface Microroughness in Ruthenium CMP (Ru CMP 공정에서의 화학액과 연마 입자 농도에 따른 연마율과 표면 특성)

  • Lee, Sang-Ho;Kang, Young-Jea;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1296-1299
    • /
    • 2004
  • MIM capacitor has been investigated for the next generation DRAM. Conventional poly-Si bottom electrode cannot satisfy the requirement of electrical properties and comparability to the high k materials. New bottom electrode material such as ruthenium has been suggested in the fabrication of MIM structure capacitor. However, the ruthenium has to be planarized due to the backend scalability. For the planarization CMP has been widely used in the manufacture of integrated circuit. In this research, ruthenium thin film was Polished by CMP with cerium ammonium nitrate (CAN)base slurry. HNO3 was added on the CAN solution as an additive. In the various concentration of chemical and alumina abrasive, ruthenium surface was etched and polished. After static etching and polishing, etching and removal rate was investigated. Also microroughness of surface was observed by AFM. The etching and removal rate depended on the concentration of CAN, and HNO3 accelerated the etching and polishing of ruthenium. The reasonable removal rate and microroughness of surface was achieved in the 1wt% alumina slurry.

  • PDF

Effect of Residual Chlorine on the Analysis of Geosmin and 2-MIB Using SPME (Solid Phase Microextraction) (SPME를 이용한 Geosmin과 2-MIB분석 시 잔류염소의 영향에 관한 연구)

  • Kim, Sung-Jin;Hong, Seong-Ho;Min, Dal-Ki
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.713-719
    • /
    • 2005
  • SPME (Soild phase microextraction) has been used in the analysis of many volatile organic compounds, such as geosmin and 2-methylisoborneol (2-MIB), trihalomethanes (THMs) in drinking water. SPME fiber is characterized by high adsorption capacity (DVB/CAR/PDMS, DVB/PDMS etc.). Although the highly active adsorption capacities of the SPME fiber are often to the chemical functional group, surface properties play a significant role in determining the surface adsorption capacities. The objectives of this study were to evaluate effect of residual chlorine on analysis of geosmin and 2-MIB. Image taken by SEM before preloaded with chlorine, the surface and porous media was almost perfect spherical shape and no clogging of pores. However, after preloaded with chlorine the surface was aggregated and pore was blocked. The recovery rate of geosmin and 2-MIB coexisting with chlorine was reduced by 35 to 62%. The recovery rate with preloaded with chlorine was reduced by 25 to 43%. The lower concentration of geosmin and 2-MIB and the higher concentration of chlorine existed in water, the lower the recovery rate was.

Sorption of Chromium Ions from Aqueous Solution onto Chemically Activated Carbons Developed from Maize Cobs

  • Youssef, A.M.;El-Nabarawy, Th.;Shouman, Mona A.;Khedr, S.A.
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.275-282
    • /
    • 2008
  • Chemically activated carbons were prepared from maize cobs, using phosphoric acid of variable concentration. The textural parameters of the activated carbons were determined from the nitrogen adsorption isotherms measured at 77 K. The chemistry of the carbon surface was determined by measuring the surface pH, the pHPZC and the concentration of the carbon - oxygen groups of the acid type on the carbon surface. Kinetics of Cr(VI) sorption/reduction was investigated at 303 K. Two processes were investigated in terms of kinetics and equilibrium namely; Cr(VI) removal and chromium sorption were studied at various initial pH (1-7). Removal of Cr(VI) shows a maximum at pH 2.5. At pH<2.5, sorption decreases because of the proton competition with evolved Cr(III) for ion exchange sites. The decrease of sorption at pH>2.5 is due to proton insufficiency and to the decrease of the extent of Cr(VI) reduction. The chemistry of the surface of activated carbon is an important factor in determining its adsorption capacity from aqueous solutions particularly when the sorption process involves ion exchange.