• Title/Summary/Keyword: Surface concentration

Search Result 6,117, Processing Time 0.033 seconds

Synthesis of Flake Type Micro Hollow Silica Using Mg(OH)2 Inorganic Template

  • Lee, Ji-Seon;Noh, Kyeong-Jae;Moon, Seong-Cheol;Lee, Young-Chul;Lee, Seong-Eui
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.222-227
    • /
    • 2017
  • Flake-type micro hollow silica was synthesized by precipitation method using an $Mg(OH)_2$ inorganic template and sodium silicate and ammonium sulfate as the silica precursors. We investigated the effects of the silica precursor concentration on the shape, shell thickness, and surface of the hollow silica. When the concentration of the silica precursor was 0.5 M, the hollow silica had a smooth and translucent thin shell, but the shell was broken. On the other hand, the shell thickness of the hollow silica changed in the range of 12 nm to 18 nm with the increase of the precursor concentration from 0.7 M to 1.1 M. Simultaneously, unintended spherical silica satellites were created on the shell surface. The number of satellites and the size rose according to the increased concentration of silica precursor. The reason for the formation of spherical silica satellites is that the $NH_4OH$ nucleus generated in the synthesis of hollow silica acted as another silica reaction site.

Characteristic Analysis of the Surface Concentration Distribution under the Influence of Particle Settling by Lagrangian Model (Lagrangian 모형에 의한 분진 침강 효과에 따른 지표면 농도의 분포특성 분석)

  • Park, I.S.;Kang, I.G.;Choi, K.D.
    • Journal of Environmental Impact Assessment
    • /
    • v.2 no.1
    • /
    • pp.57-63
    • /
    • 1993
  • An analysis for particle settling effects via of plume centerline tilted exponentially under the influence of panicle settling velocity is carried out for particle of $30{\mu}m$ diameter with $1g/cm^3$ density and 0.02m/s settling velocity corresponding to its particle characteristic according to various wind speeds, atmospheric stabilities. Characteristic analysis of surface concentration distribution simulated by Lagrangian model also are carried out under the influence of plume centerline tilted exponentially at 10m stack height emitted 200 particles per second. This study reveals that plume centerline at the nearby source is sharply tilted exponentially under the condition of stable, weakly wind speed, therefore the lower concentration at the nearby source, the higher concentration at the downwind distance far away from source than actual one is brought out, if not apply the effect of plume centerline tilted exponentially to diffusion Model.

  • PDF

Effects $H_2$ carrier gas on the mechanical properties of poly 3C-SiC thin films ($H_2$ 캐리어가스가 다결정 3C-SiC 박막의 기계적 특성에 미치는 영향)

  • Han, Ki-Bong;Chung, Gwiy-Sang;Hong, Hoang Sy
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.89-90
    • /
    • 2007
  • This paper presents the mechanical properties of 3C-SiC thin film according to 0, 7, and 10% carrier gas $(H_2)$ concentrations using Nano Indentation. When carrier gas $(H_2)$ concentration was 10%, it has been proved that the mechanical properties, elastic modulus and hardness, of 3C-SiC are the best of them. In the case of 10% carrier gas concentration, Young's modulus and Hardness were obtained as 367 GPa and 36 GPa, respectively. When the surface roughness according to $H_2$ concentrations was investigated by AFM (atomic force microscope), when $H_2$ concentration was 10%, the roughness of 3C-SiC thin was 9.92 nm, which is also the best of them. Therefore, in order to apply poly 3C-SiC thin film to MEMS applications, $H_2$ concentration's rate should increase to obtain better mechanical properties and surface roughness.

  • PDF

Halogen Etching of Si(100)-2x1 : Dependence on Vacancy Creation and Surface Concentration

  • Nakayama, Koji
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.146-146
    • /
    • 2000
  • We have studied the etching of Si(100)-2xl by Cl and Br, using scanning tunneling microscopy to obtain morphological information that can be related to reaction and desorption pathways. Clean surfaces were exposed to molecular halogens at room temperature to produce well-defined chemisorption structures for coverages in the range 0.2-1.0 ML. Heating to 750-750 K induced etching by thermal desorpton. Analysis of the halogen concentration before and after heating indicated that the rates of desorption for SICl2 or SiBr2 were greatest for intermediate coverages and that etching was suppressed as saturation was reached. Hence, desorption is not simply proportional to the concentration of species that can form adsorbed precursors SiX2(a). Instead, it is directly coupled to the creation of monomer vacancies adjacent to the SiX2 (a) unit because this increases the lifetime of the excited state and increases the likelihood of its desorption. Increasing the surface concentration of halogens reduces the rate of vacancy formation. We show that these rates are also affected by a re-dimerization process in the high temperature Br-stabilized Si(100)-3xl reconstruction that increases the likelihood of siBr2(a) formation and enhances its desorption. I will also discuss recent result for F etching on Si(100)-2xl.

  • PDF

Control of Galvanic Corrosion Between A516Gr.55 Steel and AA7075T6 Depending on NaCl Concentration and Solution Temperature

  • Hur, S.Y.;Jeon, J.M.;Kim, K.T.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.281-287
    • /
    • 2020
  • Chloride ion is one of the most important corrosive agents in atmospheric corrosion, especially in marine environments. It has high adsorption rate and increases the conductivity of electrolytes. Since chloride ions affect the protective properties and the surface composition of the corrosion product, they increase the corrosion rate. A low level of chloride ions leads to uniform corrosion, whereas a high level of chloride ions may induce localized corrosion. However, higher solution temperatures tend to increase the corrosion rate by enhancing the migration of oxygen in the solution. This work focused on the effect of NaCl concentration and temperature on galvanic corrosion between A516Gr.55 carbon steel and AA7075T6 aluminum alloys. When AA7075T6 aluminum alloy was galvanically coupled to A516Gr.55 carbon steel, AA7075T6 was severely corroded regardless of NaCl concentration and solution temperature, unlike the corrosion properties of single specimen. The combined effect of surface treatment involving carbon steel and aluminum alloy on corrosion behavior was also discussed.

Analysis of Bulk Concentration on Double-Layer Structure for Electrochemical Capacitors

  • Khaing, Khaing Nee Nee;Hla, Tin Tin
    • Korean Journal of Materials Research
    • /
    • v.32 no.7
    • /
    • pp.313-319
    • /
    • 2022
  • Double-layer capacitors (DLCs) are developed with high surface electrodes to achieve a high capacitance value. In the present work, the initial bulk concentration of 1 mol/m3 and 3 mol /m3 are selected to show the consequential effects on the performance of a double-layer capacitor. A 1D model of COMSOL Multiphysics has been developed to analyze the electric field and potential in cell voltage, the electric displacement field and polarization induced by the field, and energy density in a double-layer structure. The electrostatics and the electric circuit modes in COMSOL are used to simulate the electrochemical processes in the double-layer structure. The analytical analysis of a double-layer capacitor with different initial bulk concentrations is investigated by using Poisson-Nernst-Plank equations. From the simulation results, the differential capacitance changes as a function of compact layer thickness and initial bulk concentration. The energy density varies with the differential capacitance and voltage window. The values of energy density are dominated by the interaction of ions in the solution and electrode surface.

Effect of Amine Functional Group on Removal Rate Selectivity between Copper and Tantalum-nitride Film in Chemical Mechanical Polishing

  • Cui, Hao;Hwang, Hee-Sub;Park, Jin-Hyung;Paik, Ungyu;Park, Jea-Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.546-546
    • /
    • 2008
  • Copper (Cu) Chemical mechanical polishing (CMP) has been an essential process for Cu wifing of DRAM and NAND flash memory beyond 45nm. Copper has been employed as ideal material for interconnect and metal line due to the low resistivity and high resistant to electro-migration. Damascene process is currently used in conjunction with CMP in the fabrication of multi-level copper interconnects for advanced logic and memory devices. Cu CMP involves removal of material by the combination of chemical and mechanical action. Chemicals in slurry aid in material removal by modifying the surface film while abrasion between the particles, pad, and the modified film facilitates mechanical removal. In our research, we emphasized on the role of chemical effect of slurry on Cu CMP, especially on the effect of amine functional group on removal rate selectivity between Cu and Tantalum-nitride (TaN) film. We investigated the two different kinds of complexing agent both with amine functional group. On the one hand, Polyacrylamide as a polymer affected the stability of abrasive, viscosity of slurry and the corrosion current of copper film especially at high concentration. At higher concentration, the aggregation of abrasive particles was suppressed by the steric effect of PAM, thus showed higher fraction of small particle distribution. It also showed a fluctuation behavior of the viscosity of slurry at high shear rate due to transformation of polymer chain. Also, because of forming thick passivation layer on the surface of Cu film, the diffusion of oxidant to the Cu surface was inhibited; therefore, the corrosion current with 0.7wt% PAM was smaller than that without PAM. the polishing rate of Cu film slightly increased up to 0.3wt%, then decreased with increasing of PAM concentration. On the contrary, the polishing rate of TaN film was strongly suppressed and saturated with increasing of PAM concentration at 0.3wt%. We also studied the electrostatic interaction between abrasive particle and Cu/TaN film with different PAM concentration. On the other hand, amino-methyl-propanol (AMP) as a single molecule does not affect the stability, rheological and corrosion behavior of the slurry as the polymer PAM. The polishing behavior of TaN film and selectivity with AMP appeared the similar trend to the slurry with PAM. The polishing behavior of Cu film with AMP, however, was quite different with that of PAM. We assume this difference was originated from different compactness of surface passivation layer on the Cu film under the same concentration due to the different molecular weight of PAM and AMP.

  • PDF

The Fluctuation of Aerosol Number Concentration by Wind Field Variation during Snowfall at the Southwestern Coastal Area (남서해안지역 강설시 바람장 변화에 따른 에어로솔 수 농도 변동)

  • Lee, Dong-In;Kang, Mi-Young;Seo, Kil-Jong;You, Cheol-Hwan;Park, Sung-Hwa;Kim, Poo-Kyoung;Park, Nam-Sik
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.699-709
    • /
    • 2008
  • To understand the development mechanism of the aerosols in the surface boundary layer, the variation in the aerosol number concentration due to the divergence and convergence of the wind fields was investigated. The aerosol number concentration was measured in the size ranges of $0.3{\sim}10.0{\mu}m$ using a laser particle counter(LPC) from 0000 LST on 03 Feb. to 0600 LST on 07 Feb. 2004 at Mokpo in Korea during snowfall. The Velocity Azimuth Display(VAD) technique was used to retrieve the radar wind fields such as the horizontal wind field, divergence, and deformations including the vertical air velocity from a single Doppler radar. As a result, the distribution of the aerosol number concentration is apparently different for particles larger than $1{\mu}m$ during snowfall, and it has a tendency to increase at the beginning of the snowfall. The increase and decrease in the aerosol concentration due to the convergence and divergence of the wind fields corresponded to the particles with diameters greater than $1{\mu}m$. It is found that the fluctuations in the aerosol number concentration are well correlated with the development and dissipation of snowfall radar echoes due to the convergence and divergence of horizontal wind fields near the surface boundary layer in the inland during the snowfall.

The Effects of Hexamethylenetetramine Concentration on the Structural and Electrochemical Performances of Ni(OH)2 Powder for Pseudocapacitor Applications (헥사메틸렌테트라민 농도에 따른 수산화니켈 입자의 특성 분석 및 의사커패시터 응용)

  • Kim, Dong Yeon;Jeong, Young-Min;Baek, Seong-Ho;Son, Injoon
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.231-236
    • /
    • 2019
  • Ni hydroxides ($Ni(OH)_2$) are synthesized on Ni foam by varying the hexamethylenetetramine (HMT) concentration using an electrodeposition process for pseudocapacitor (PC) applications. In addition, the effects of HMT concentration on the $Ni(OH)_2$ structure and the electrochemical properties of the PCs are investigated. HMT is the source of amine-based $OH^-$ in the solution; thus, the growth rate and morphological structure of $Ni(OH)_2$ are influenced by HMT concentration. When $Ni(OH)_2$ is electrodeposited at a constant voltage mode of -0.85 V vs. Ag/AgCl, the cathodic current and the number of nucleations are significantly reduced with increasing concentration of HMT from 0 to 10 mM. Therefore, $Ni(OH)_2$ is sparsely formed on the Ni foam with increasing HMT concentration, showing a layered double-hydroxide structure. However, loosely packed $Ni(OH)_2$ grains that are spread on Ni foam maintain a much greater surface area for reaction and result in the effective utilization of the electrode material due to the steric hindrance effect. It is suggested that the $Ni(OH)_2$ electrodes with HMT concentration of 7.5 mM have the maximum specific capacitance (1023 F/g), which is attributed to the facile electrolyte penetration and fast proton exchange via optimized surface areas.

A study on Physical Properties of Synthetic Leather added Collagen protein (Part I) (Collagen단백질을 첨가한 합성피혁의 물성에 관한 연구(제1보))

  • 백천의
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.6
    • /
    • pp.970-976
    • /
    • 1997
  • Synthetic leather added collagen protein was coagulated in DMF solution. With increasing collagen concentration, thickness of synthetic leather increased. In addition, water vapor permeability and water vapor absoption increased with increasing collagen protein concentration. But MIU and SMD value of surface properties decreased with increasing collagen protein concentration. As a result, synthetic leather added collagen protein showed comfort and dry touch.

  • PDF