Browse > Article
http://dx.doi.org/10.14773/cst.2020.19.6.281

Control of Galvanic Corrosion Between A516Gr.55 Steel and AA7075T6 Depending on NaCl Concentration and Solution Temperature  

Hur, S.Y. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
Jeon, J.M. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
Kim, K.T. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
Kim, Y.S. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
Publication Information
Corrosion Science and Technology / v.19, no.6, 2020 , pp. 281-287 More about this Journal
Abstract
Chloride ion is one of the most important corrosive agents in atmospheric corrosion, especially in marine environments. It has high adsorption rate and increases the conductivity of electrolytes. Since chloride ions affect the protective properties and the surface composition of the corrosion product, they increase the corrosion rate. A low level of chloride ions leads to uniform corrosion, whereas a high level of chloride ions may induce localized corrosion. However, higher solution temperatures tend to increase the corrosion rate by enhancing the migration of oxygen in the solution. This work focused on the effect of NaCl concentration and temperature on galvanic corrosion between A516Gr.55 carbon steel and AA7075T6 aluminum alloys. When AA7075T6 aluminum alloy was galvanically coupled to A516Gr.55 carbon steel, AA7075T6 was severely corroded regardless of NaCl concentration and solution temperature, unlike the corrosion properties of single specimen. The combined effect of surface treatment involving carbon steel and aluminum alloy on corrosion behavior was also discussed.
Keywords
Carbon steel; AA7075T6; Galvanic corrosion; NaCl concentration; Solution temperature;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 G. T. Seo, H. R. Jung, H. D. Lee, W. S. Chung, and C. S. Gee,, J. Korean Soc. Environ. Eng., 20, 1151 (1998).
2 W. S. Chung, H. D. Lee, M. J. Yu, and P. J. Kwak, J. Korean Soc. Environ. Eng., 23, 1611 (2001).
3 K. T. Kim and Y. S. Kim, Corros. Sci. Tech., 17, 231 (2018). http://dx.doi.org/10.14773/cst.2018.17.5.231   DOI
4 Y. Song, G. Jiang, Y. Chen, P. Zhao, and Y. Tian, Science reports, Article number: 6865 (2017). https://doi.org/10.1038/s41598-017-07245-1
5 Y. Ma, Y. Li, and F. Wang, Corros. Sci., 51, 997 (2009). https://doi.org/10.1016/j.corsci.2009.02.009   DOI
6 H. Pancheva, G. Reznichenko, N. Miroshnichenko, A. Sincheskul, A. Pilipenko, and V. Loboichenko, Eastern-European J. of Enterprise Technologies, 4, 88 (2017). https://doi.org/10.15587/1729-4061.2017.108908   DOI
7 M. Morcillo, B. Chico, J. Alcantara, I. Diaz, J. Simancas, and D. D. L. Fuente, , Mater. Corros., 66, 882 (2015). https://doi.org/10.1002/maco.201407940   DOI
8 S. K. Chang, , J. Korean Inst. Surf. Eng., 30, 69 (1997). http://www.koreascience.or.kr/article/JAKO199711920551682.page
9 Y. K. Kim, Y. I. Heo, and D. K. Ra, J. of Korean Society of Environmental Technology, 3, 293 (2002).
10 R. W. Revie and H. H. Uhlig, Corrosion and Corrosion Control, 4th ed., p. 121, Wiley-Interscience (2008).
11 S. Y. Hur, K. T. Kim, and Y. S. Kim, Corros. Sci. Tech., 18, 129 (2019). https://doi.org/10.14773/cst.2019.18.4.129   DOI
12 H. Ezuber, A. E. Houd, and F. E. Shawesh, , Mater. Design, 29, 801 (2008). https://doi.org/10.1016/j.matdes.2007.01.021   DOI
13 P. M. Natishan and W. E. O'Grady, J. Electrochem. Soc., 161, C421 (2014).   DOI
14 B. Zaid, D. Saidi, A. Benzaid, and S. Hadji, Corros. Sci., 50, 1841 (2008). https://doi.org/10.1016/j.corsci.2008.03.006   DOI
15 Y. Wang, G. Cheng, W. Wu, Q. Qiao, Y. Li, and X. Li, Appl. Surf. Sci., 349, 746 (2015). http://dx.doi.org/10.1016/j.apsusc.2015.05.053   DOI
16 Z. S. Smialowska, Corros. Sci., 41, 1743 (1999). https://doi.org/10.1016/S0010-938X(99)00012-8   DOI
17 W. Huang, B. L. Hurley, F. Yang, and R. G. Buchheit, Electrochim. Acta, 199, 242, (2016). http://dx.doi.org/10.1016/j.electacta.2016.03.125   DOI
18 G. S. Frankel, J. Electrochem. Soc., 145, 2168 (1998). https://doi.org/10.1149/1.1838615   DOI
19 M. Cao, L. Liu, L. Fan, Z. Yu, Y. Li, E. E. Oguzie, and F. Wang, Materials, 11, 235 (2018). https://doi.org/10.3390/ma11020235   DOI
20 S. Y. Hur, K. T. Kim, Y. R. Yoo, and Y. S. Kim, Corros. Sci. Tech., 19, 75 (2020). https://doi.org/10.14773/cst.2020.19.2.75   DOI
21 A. A. Younis, M. M. B. El-sabbah, and R. Holz, , J. Solid State Electr., 16, 1033 (2012). https://doi.org/10.1007/s10008-011-1476-7   DOI