• Title/Summary/Keyword: Surface concentration

Search Result 6,123, Processing Time 0.035 seconds

Effect of Surface Roughness of Sapphire Wafer on Chemical Mechanical Polishing after Lap-Grinding (랩그라인딩 후 사파이어 웨이퍼의 표면거칠기가 화학기계적 연마에 미치는 영향)

  • Seo, Junyoung;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.323-329
    • /
    • 2019
  • Sapphire is currently used as a substrate material for blue light-emitting diodes (LEDs). The market for sapphire substrates has expanded rapidly as the use of LEDs has extended into various industries. However, sapphire is classified as one of the most difficult materials to machine due to its hardness and brittleness. Recently, a lap-grinding process has been developed to combine the lapping and diamond mechanical polishing (DMP) steps in a single process. This paper studies, the effect of wafer surface roughness on the chemical mechanical polishing (CMP) process by pressure and abrasive concentration in the lap-grinding process of a sapphire wafer. In this experiment, the surface roughness of a sapphire wafer is measured after lap-grinding by varying the pressure and abrasive concentration of the slurry. CMP is carried out under pressure conditions of 4.27 psi, a plate rotation speed of 103 rpm, head rotation speed of 97 rpm, and slurry flow rate of 170 ml/min. The abrasive concentration of the CMP slurry was 20wt, implying that the higher the surface roughness after lapgrinding, the higher the material removal rate (MRR) in the CMP. This is likely due to the real contact area and actual contact pressure between the rough wafer and polishing pad during the CMP. In addition, wafers with low surface roughness after lap-grinding show lower surface roughness values in CMP processes than wafers with high surface roughness values; therefore, further research is needed to obtain sufficient surface roughness before performing CMP processes.

Effects of pH, Electrolyte Concentrations, and Alginate Molecular Weights on Surface Hydrophobicity of Soy Protein Isolates (pH, 전해질의 농도 및 알긴산 분자량이 분리콩단백질의 표면소수성에 미치는 영향)

  • Lim, Yeong-Seon;Yoo, Byung-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.9
    • /
    • pp.1285-1292
    • /
    • 2016
  • Changes in surface hydrophobicity of soy protein isolate (SPI), which plays an important role in the functional characteristics of protein, were measured according to various SPI concentrations, pH levels, electrolytes concentrations, and alginate molecular weights by using 1-anilino-8-naphthalene sulfonic acid as a fluorescent probe. SPI surface hydrophobicity decreased as SPI concentrations increased. SPI surface hydrophobicity reached a maximum at pH 7.0. SPI surface hydrophobicity rapidly increased as the NaCl concentration of SPI solution increased up to 100 mM, and showed no large increases above 100 mM. However, SPI surface hydrophobicity radically decreased until the $CaCl_2$ concentration reached 50 mM and revealed no large variations above 50 mM. A similar trend was exhibited in the case of $MgCl_2$. As both the concentration and molecular weight of sodium alginate increased, SPI surface hydrophobicity decreased. The increasing rate of SPI surface hydrophobicity decreased as the molecular weight of sodium alginate increased.

Optimization for Maillard Reaction Substrate Conditions of Ribose and Hydrolyzed Wheat Gluten Solution Using Response Surface Methodology (반응표면분석법을 이용한 Ribose와 소맥 글루텐 산 가수분해물의 마이얄 반응기질 조건 최적화)

  • Moon, Ji-Hye;Choi, Hee-Don;Choi, In-Wook;Kim, Yoon-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.3
    • /
    • pp.458-465
    • /
    • 2011
  • Response surface methodology (RSM) was applied to optimize substrate conditions of ribose and hydrolyzed wheat gluten solution for Maillard reaction. Independent variables were NaCl concentration of hydrolyzed wheat gluten ($X_1$), concentration of ribose ($X_2$) and concentration of hydrolyzed wheat gluten ($X_3$), while the dependent variables of the central composite design (CCD) were browning index (absorbance 420 nm), DPPH radical scavenging activity (DF) and sensory preference (score). Optimum substrate conditions at $140^{\circ}C$, 30 min reaction were 3% NaCl concentration of hydrolyzed wheat gluten, 6.2% concentration of ribose and 13.27% concentration of hydrolyzed wheat gluten. The coefficients of determination ($R^2$) were 0.975, 0.960 and 0.854, the model fit was very significant (p<0.001). DPPH radical scavenging activities and sensory preferences were predicted as 700 (DF) and 8.42 (score), respectively. The model solution increased more browning and DPPH radical scavenging activities with increasing ribose and hydrolyzed wheat gluten concentration. Especially hydrolyzed wheat gluten concentration was the most influential factor, while NaCl concentration of hydrolyzed wheat gluten hardly affected the responses. Sensory preference was increased with rising wheat gluten concentration and decreasing NaCl concentration of hydrolyzed wheat gluten.

Quantitative Analysis of Wear Debris for Surface Modification Layer by Ferrography (Ferrography에 의한 표면개질층의 마모분 정량분석)

  • 오성모;이봉구
    • Tribology and Lubricants
    • /
    • v.15 no.3
    • /
    • pp.265-271
    • /
    • 1999
  • Wherever there are rotating equipment and contact between surface, there is wear and the generation of wear particles. The particles contained in the lubricating oil carry detailed and important information about the condition monitoring of the machine. This information may be deduced from particle shape, composition, size distribution, and concentration. Therefore, This paper was undertaken to Ferrography system of wear debris generated from lubricated moving machine surface. The lubricating wear test was performed under different experimental conditions using the Falex wear test of Pin and V-Block type by Ti(C, N) coated. It was shown from the test results that wear particle concentration (WPC) and wear severity Index( $I_{S}$), size distribution in normal and abnormal wear have come out all the higher value by increases sliding friction time. Wear shape is observed on the Ferrogram it was discovered a thin leaf wear debris as well as ball and plate type wear particles. This kind of large wear shape have an important effect not only metals damage, but also seizure phenomenon.

Effects of Ginseng Saponins on Cholesterol Solubility (인삼(人蔘) Saponin류(類)가 Cholesterol 용해도(溶解度)에 미치는 영향(影響))

  • Ha, Choon-Ja;Kim, Sung-Ho
    • Korean Journal of Pharmacognosy
    • /
    • v.15 no.3
    • /
    • pp.134-138
    • /
    • 1984
  • In this study the solubility of cholesterol was examined with ginseng saponin and chemical saponin used in the preparation of reaction mixture of 0.15M NaCl solution. It was shown that the solubility of cholesterol varied in the concentration of ginseng saponins and in the temperature and that the osmotic pressure and the surface tension was amenable to changes in the concentration of ginseng saponins and the incubation period of the reaction mixture. From the results, it was revealed that the solubility of cholesterol was dependent upon the incubated times and the concentration of ginseng saponins in 0.15mM NaCl solution and that ginseng saponins have the cholesterol solubilizing effect as evidenced in the physicochemical properties of mixed micelle formation and surface-activity.

  • PDF

A Model Estimating the Fatigue Crack Growth in Aluminum Alloy A5083-O Considering the Effect of Stress Concentration (응력집중의 영향을 고려한 알루미늄합금 A5083-O의 피로균열전파 특성 예측모델)

  • 조상명;김종호;김영식
    • Journal of Welding and Joining
    • /
    • v.12 no.3
    • /
    • pp.90-100
    • /
    • 1994
  • In this study the fatigue crack growth behavior was investigated for the surface cracks in aluminum alloy A5083-O plate and its weldment. Several kinds of specimens were tested at room temperature. The Eccentric specimens(E1.0, E2.5) subjected to combined stresses(tension+bending) were tested and the welded specimens with weld toes(TOE1, TOE2) were tested in order to verify the method to consider the stress concentration such as weld toe. It was ascertained that the surface crack growth property in the weld toe could be predicted by the corrected Pang's equation proposed in this study.

  • PDF

Controlling the Size and Surface Morphology of Carboxylated Polystyrene Latex Particles by Ammonium Hydroxide in Emulsifier-free Polymerization

  • Dong, Hyun-Bae;Lee, Sang-Yup;Yi, Gi-Ra
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.397-402
    • /
    • 2009
  • In emulsifier-free, emulsion polymerization with ionizable comonomer, the ionization of the comonomer is critical in determining the size of the final polymerie particles at sub-micrometer scale. In this study, polystyrene latex beads with carboxylates on the surface were synthesized using acrylic acid as a comonomer. Specifically, ammonium hydroxide was added to the emulsifier-free polymerization system to promote the ionization of acrylic acid by increasing pH. Smaller polystyrene latex particles were produced by increasing the ammonium hydroxide concentration in the reaction system, due to the enhanced stability promoted by the ionization of acrylic acid during the nucleation step. In addition, the surface morphology of the polystyrene latex particles was controlled by the concentration of acrylic acid, the dissociation of which was influenced by the ammonium hydroxide concentration.

Effect of the electrolyte composition and the plating condition on the hardness of zinc deposit in the sulfate bath (황산아연욕에서 도금층 경도에 미치는 욕조성 및 도금조건의 영향)

  • 김명수;김영근
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.5
    • /
    • pp.356-364
    • /
    • 2000
  • Factors that affect the hardness of the zinc electrodeposits in the sulfate electrolyte were investigated. The hardness of zinc deposit was enhanced by increasing the concentration of impurities such as iron and nickel in the bath that changed the crystallographic orientation of the zinc deposit from the strong basal plane to the random orientation. The increase of the concentration of sodium sulfate and current density in iron contained bath improved the hardness of zinc deposit because those were easily codeposited in zinc layer. However the increase of the concentration of sodium sulfate up to 80g/$\ell$ in the bath darkened the surface of zinc electrodeposits due to change of morphology by the codeposition of iron.

  • PDF

Effect of Changes in Condition of Ammonia Gas Addition on the Surface Layer Microstructure and Porosity during Austenitic Nitriding of Low Carbon Steels (저 탄소강의 오스테나이트 질화 시 암모니아 가스첨가 조건변화가 표면층 조직 및 기공변화에 미치는 영향)

  • Lee, Jewon;Roh, Y.S.;Sung, J.H.;Lim, S.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.5
    • /
    • pp.201-211
    • /
    • 2019
  • Low carbon steel (S20C steel) and SPCC steel sheet have been austenitic nitrided at $700^{\circ}C$ in a closed pit type furnace by changing the flow rate of ammonia gas and heat treating time. When the flow rate of ammonia gas was low, the concentration of residual ammonia appeared low and the hardness value of transformed surface layer was high. The depth of the surface layer, however, was shallow. With increasing the concentration of residual ammonia by raising up the ammonia gas flow, both the depth of the surface layer and the pore depth increased, while the maximum hardness of the surface layer decreased. By introducing a large amount of ammonia gas in a short time, a deep surface layer with minimal pores on the outermost surface was obtained. In this experiment, while maintaining 10~12% of residual ammonia, the flow rate of inlet ammonia gas, 7 liter/min, was introduced at $700^{\circ}C$ for 1 hour. In this condition, the thickness of the surface layer without pores appeared about $60{\mu}m$ in S20C steel and $30{\mu}m$ in SPCC steel plate. Injecting additional methane gas (carburizing gas) to this condition played a deteriorating effect due to promoting the formation of vertical pores in the surface layer. For $1^{st}$ transformed surface layer for S20C steel, maintaining 10~12% residual ammonia condition via austenitic nitriding process resulted in ${\varepsilon}$ phase with relatively high nitrogen concentration (just below 4.23 wt.%N) among the mixed phases of ${\varepsilon}+{\gamma}$. The ${\varepsilon}$ phase was formed a specific orientation perpendicular to the surface. For $2^{nd}$ transformed layer for S20C steel, ${\gamma}$ phase was rather dominant (just above 2.63 wt.%N). For SPCC steel sheet, there appeared three phases, ${\gamma}$, ${\alpha}(M)$ and weak ${\varepsilon}$ phase. The nitrogen concentration would be approximately 2.6 wt.% in these phases condition.

Separation of ethanol/water mixtures with hydrophobic alumina membrane in vapor permeation (소수성 알루미나막의 증가투과에 의한 에탄올의 분리)

  • Lee, Sang-In;Song, Kun-Ho;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.179-184
    • /
    • 2000
  • The surface of porous alumina membrane was modified with silane coupling agent in order to enhance hydrophobicity. The contact angle of water to the surface-modified alumina membrane was greater than $90^{\circ}$. The surface-modified membrane was tested in vapor permeation for the concentration of aqueous ethanol. With the increase of ethanol concentration in the feed, permeation flux increased due to the greater affinity of ethanol with surface-modified alumina membrane than that of water. The experimental results showed that the permeation rate of surface-modified alumina membrane was 15~1000 times greater than that of polymer membranes.

  • PDF