• Title/Summary/Keyword: Surface coating layer

Search Result 1,182, Processing Time 0.024 seconds

Morphology Control of ZnO Nanorods on ITO Substrates in Solution Processes (습식공정 기반 ITO 기판 위 산화아연 나노로드 모폴로지 제어)

  • Shin, Kyung-Sik;Lee, Sam-Dong;Jeong, Soon-Wook;Lee, Sang-Woo;Kim, Sang-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.987-991
    • /
    • 2009
  • We report growth of vertically well-aligned zinc oxide (ZnO) nanorods on indium-tin oxide (ITO)/glass substrates using a simple aqueous solution method at low temperature via control of the ZnO seed layer morphology. ZnO nanoparticles acting as seeds are pre-coated on ITO-coated glass substrates. by spin coating to control distribution and density of the ZnO seed nanoparticles. ZnO nanorods were synthesized on the seed-coated substrates in a dipping process into a main growth solution. It was found that the alignment of ZnO nanorods can be effectively manipulated by the spin-coating speed of the seed layer. A grazing incidence X-ray diffraction pattern shows that the ZnO seed layer prepared using the higher spin-coating speed is of uniform seed distribution and a flat surface, resulting in the vertical growth of ZnO nanorods aligned toward the [0001] direction in the main growth process.

Preparation and Characteristics of Transparent Anti-static Films (투명 대전방지 필름 제조 및 특성)

  • 김종은;심재훈;서광석;윤호규;김명화;황공현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.1
    • /
    • pp.52-59
    • /
    • 2000
  • In order to develop the transparent anti-static film with higher than 80% transparency to visible light, organic conductive compounds, N-methyl phenazinium 7,7,8,8-tetracyanoquinonedimethane (TCNQ) com-plex salts was synthesized and bar-coated on the polythylene terephthalate (PET) film using polymer binders. The best surface properties were obtained when acrylic binder was used. A single layer of TCNQ made of a acrylic binder showed a surface resistance of 10\ulcorner $\Omega$/ , a conductivity of 10\ulcorner S/cm, and a transparency of 75%. An optical microscopic examination revealed that the binder was first solidi-fied on the surface of PET film over which the needle-shaped TCNQ crystals were grown. An acrylic polyol coating over the TCNQ layer improved the transparency to 87%, becuase the acrylic polyol covers the surface of TCNQ crystals to reduce the surface roughness. This conductive material has thermal stability at room temperature and 4$0^{\circ}C$ over 4,000 h.

  • PDF

A Study on the Pd-Ni Alloy Hydrogen Membrane Using the Sputter Deposition (스퍼터 증착 방식으로 제조된 Pd-Ni 합금 수소 분리막 연구)

  • Kim Dong-Won;Park Jeong-Won;Kim Sang-Ho;Park Jong-Su
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.243-248
    • /
    • 2004
  • A palladium-nikel(Pd-Ni) alloy composite membrane has been fabricated on microporous nickel support formed with nickel powder. Plasma surface treatment process is introduced as pre-treatment process instead of HCI activation. Pd coating layer was prepared by dc magnetron sputtering deposition after $H_2$ plasma surface treatment. Palladium-nickel alloy composite layer had a fairly uniform and dense surface morphology. The membrane was characterized by permeation experiments with hydrogen and nitrogen gases at temperature of 773 K and pressure of 2.2psi. The hydrogen permeance was 6 ml/minㆍ$\textrm{cm}^2$ㆍatm and the selectivity was 120 for hydrogen/nitrogen($H_2$/$N_2$) mixing gases at 773 K.

Interfacial Control of Multi-functional CNT and ITO/PET Nanocomposites having Self-Sensing and Transparency (자체-감지능 및 광투과도를 지닌 CNT 및 ITO/PET 다기능성 나노복합소재의 계면 조절 연구)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Transparent and conductive carbon nanotube on polyethylene terephthalate (PET) were prepared by dip-coating method for self-sensing multi-functional nanocomposites. The changes in the electrical and optical properties of CNT coating mainly depended on the number of dip-coating, concentration of CNT solution. Consequently, the surface resistance and transmittance of CNT coating were sensitively controlled by the processing parameters. Surface resistance of CNT coating was measured using four-point method, and surface resistance of coated CNT could be better calculated by using the dual configuration method. Optical transmittance of PET film with CNT coating was evaluated using UV spectrum. Surface properties of coated CNT investigated by wettability test via static and dynamic contact angle measurement were consistent with each other. As dip-coating number increased, surface resistance of coated CNT decreased seriously, whereas the transmittance exhibited little lower due to the thicker CNT networks layer. Interfacial microfailure properties were investigated for CNT and indium tin oxide (ITO) coatings on PET substrates by electrical resistance measurement under cyclic loading fatigue test. CNT with high aspect ratio exhibited no change in surface resistance up to 2000 cyclic loading, whereas ITO with brittle nature showed a linear increase of surface resistance up to 1000 cyclic loading and then exhibited the level-off due to reduced electrical contact points based on occurrence of many micro-cracks.

The Physical Properties of Polycarbonate Films Coated with Hard and Color Coating Materials (내마모성 색상코팅제를 코팅한 폴리카보네이트 필름의 물리적 특성)

  • Kim, Hyunjoon
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.316-320
    • /
    • 2009
  • UV curable hard and color coatings were formed on polycarbonate(PC) films. The coating materials were composed of a commercially available end-capped polyester(EB830), diacrylate monomer(HDDA), silicon acrylate, photoinitiator, and organic dye as a coloring agent. The surface properties of coating films were evaluated, and the influences of the compositions of coating materials were investigated. The coating films showed high transmission and good adhesion between coating layer and PC substrate. And the coating films exhibited higher hardness than bare PC film. The coating films with various colors were obtained by wet process, and the clear and color window lenses for mobile phone were prepared successfully.

A Foundational Study on Effect of Siliceous Sealer for Reinforcement of Concrete Surface Layer (규산질계 액상형 바탕강화재의 콘크리트 표층부 보강특성에 관한 기초적 연구)

  • 최성민;곽규성;윤우옥;김상갑;오상근;안상덕
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.671-676
    • /
    • 1998
  • This study deals with the effect on penetration properties of siliceous ion througth the mortar applicated by the waterproofing coating materials of siliceous seler liquid type. The tests of properties for reinforcing effect in mortar substrate surface layer are five kinds of water permeability, absorption, compressive strength, surface layer strength, pH content and chemical attack effect. Water permeability of mortar coated siliceous sealer in very than that of plane mortar. compressive strength of mortar coated siliceous sealer in larger than that of plane mortar about 10%.

  • PDF

얇은 layer가 존재하는 접촉표면의 열적 거동에 대한 연구

  • 안효석
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1988.11a
    • /
    • pp.35-48
    • /
    • 1988
  • 상대 접촉하고 있는 물체에 미끄럼 운동이 가해질 경우 마찰에 의해 발생되는 거의 모든 에너지는 열로써 나타나게 된다. 이러한 마찰열은 주로 adhered junctions의 파괴 및 표면돌기(surface asperities)들의 소성 변형에 의한 열역할적 비가역 반응의 결과로 발생된다. 접촉부위의 발생열은 양 접촉제의 접촉면에 전달되어 접촉표면 온도의 급격한 증가를 초래하며 그 결과로 여러가지 surface phenomena, 즉 마찰, 마모, 산화(oxidation), 부식 및 구조적 열화(structural degradation) 금속학적 상변화등에 큰 영향을 미치게 된다. 딸서 볼 및 로울링 엘레먼트 베어링, 기어, 캠과 태핏, 브레이크 등 기계요소의 설계를 위한 주인자로서 근래에 들어 접촉표면의 온도가 주목받고 있다. 표면에 존재하는 layer로서는 금속표면에 응착시킨 coating layers, contaminant films, physisorbed 또는 chemisorbed films, oxide layers 또는 마찰열에 의해 형성되는 경도가 아주 높은 내마모층(hard wear-resistant layers) 등이 고려될수 있다. 낮은 열전도성을 가진 oxide film이 접촉 표면이 온도를 증가시킨다는 것이 Jaeger에 의해 지적되었으며 Ling과 Lai는 moving heat sjource가 가해지는 layered surface의 표면온도분포를 구하면서 substrate와 thermal property가 다른 layer가 존재하게 되면 그 두께가 아주 얇더라도 (1 마이크론 정도) 표면온도는 크게 변화됨을 보였다.

  • PDF

Shape and Chemical Composition of Laser Surface Alloyed Layer under Moving Laser Source (공정변수에 따른 레이저표면합금층의 형상 및 성분변화에 관한 연구)

  • 최정영;이창희
    • Laser Solutions
    • /
    • v.2 no.2
    • /
    • pp.8-17
    • /
    • 1999
  • This study includes a basic feature of laser surface alloying for enhancing the surface properties of materials. Effects of laser processing parameters such as beam power, beam size, scanning speed on the shape and composition of alloyed layer was simulated in case of moving beam conditions (2-dimensional numerical methods). Simulated results were compared with experiments, in which the plasma coating of 80% Ni + 20% Cr deposited on the SS41 substrate was remelted with CO2 laser with Gaussian energy distribution. Simulation and experiments revealed that the shape (dimension)and composition of laser alloyed layer were strongly dependent upon the process parameters, especially interaction time (travel speed) as compared to beam diameter, beam power and absorptivity. The shape and composition of alloyed layervaried more or less exponentially with parameters.

  • PDF

Effects of Wollastonite Coating on Surface Characteristics of Plasma Electrolytic Oxidized Ti-6Al-4V Alloy (플라즈마 전해 산화처리된 Ti-6Al-4V합금의 표면특성에 미치는 울라스토나이트 코팅효과)

  • Jaeeun Go;Jong Kook Lee;Han Cheol Choe
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.257-264
    • /
    • 2023
  • Ti-6Al-4V alloys are mainly used as dental materials due to their excellent biocompatibility, corrosion resistance, and chemical stability. However, they have a low bioactivity with bioinertness in the body. Therefore, they could not directly bond with human bone. To improve their applications, their bone bonding ability and bone formation capacity should be improved. Thus, the objective of this study was to improve the bioinert surface of titanium alloy substrate to show bioactive characteristics by performing surface modification using wollastonite powder. Commercial bioactive wollastonite powder was successfully deposited onto Ti-6Al-4V alloy using a room temperature spray process. It was found that wollastonite-coated layer showed homogeneous microstructure and uniform thickness. Corrosion resistance of Ti-6Al-4V alloy was also improved by plasma electrolytic oxidation treatment. Its wettability and bioactivity were also greatly increased by wollastonite coating. Results of this study indicate that both plasma electrolytic oxidation treatment and wollastonite coating by room temperature spray process could be used to improve surface bioactivity of Ti-6Al-4V alloy substrate.

Rotation Speed Dependence of ZnO Coating Layer on SnSe powders by Rotary Atomic Layer Deposition Reactor (회전형 원자층 증착기의 회전 속도에 따른 SnSe 분말 상 ZnO 박막 증착)

  • Jung, Myeong Jun;Yun, Ye Jun;Byun, Jongmin;Choi, Byung Joon
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.239-245
    • /
    • 2021
  • The SnSe single crystal shows an outstanding figure of merit (ZT) of 2.6 at 973 K; thus, it is considered to be a promising thermoelectric material. However, the mass production of SnSe single crystals is difficult, and their mechanical properties are poor. Alternatively, we can use polycrystalline SnSe powder, which has better mechanical properties. In this study, surface modification by atomic layer deposition (ALD) is chosen to increase the ZT value of SnSe polycrystalline powder. SnSe powder is ground by a ball mill. An ALD coating process using a rotary-type reactor is adopted. ZnO thin films are grown by 100 ALD cycles using diethylzinc and H2O as precursors at 100℃. ALD is performed at rotation speeds of 30, 40, 50, and 60 rpm to examine the effects of rotation speed on the thin film characteristics. The physical and chemical properties of ALD-coated SnSe powders are characterized by scanning and tunneling electron microscopy combined with energy-dispersive spectroscopy. The results reveal that a smooth oxygen-rich ZnO layer is grown on SnSe at a rotation speed of 30 rpm. This result can be applied for the uniform coating of a ZnO layer on various powder materials.