• Title/Summary/Keyword: Surface chemical reaction

Search Result 1,660, Processing Time 0.025 seconds

Chemical Reaction between Aluminium and graphite Crucible During the Fabrication of Spherical Monosized Al particles

  • Kwon, Hansang
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.99-103
    • /
    • 2018
  • Spherical monosized pure aluminum (Al) particles are successfully fabricated by the pulsated orifice ejection method (POEM). The surface reaction between Al and the graphite crucible is investigated by analysing the microstructure and chemical composition of the materials. No significant chemical reaction occurs between Al and the graphite owing to the crystalline Al oxide (${\gamma}-Al_2O_3$) layer generated in the initial state. The ${\gamma}-Al_2O_3$ layer is clearly observed in all regions between the Al particles and graphite via transmission electron microscopy and confirmed by the selected area diffraction pattern. The morphology of the ${\gamma}-Al_2O_3$ layer perfectly follows the surface morphology of the graphite crucible, which showed nanoscale roughness. This implies that molten Al could not directly contact graphite even though the surface of the crucible became rough to some extent. However, this passivation phenomenon allowed the successful fabrication of monosized pure Al particles. Therefore, POEM is a useful process at least to manufacture monosized pure Al particles.

The Effect to Drilling by The Chemical Reaction on The Surface (표면 화학 반응이 드릴 가공에 미치는 영향)

  • 이현우;최재영;정상철;박준민;정해도;최헌종;이석우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.976-979
    • /
    • 2002
  • This research presents the new method to fabricate small features through applying chemical mechanical micro machining(C3M) for Al5052 and single crystal silicon. To improve machinability of ductile and brittle material, reacted layer was formed on the surface before micro-drilling process by chemical reaction with $HNO_3$(10wt%) and KOH(10wt%). And then workpieces were machined to compare conventional micro-drilling process with newly suggested one. To evaluate whether or not the machinability was improved by the effect of chemical condition, surface defects such as burr, chipping and crack generation were measured. Finally, it is confirmed that C3M is one of the feasible tools for micro machining with the aid of effect of the chemical reaction.

  • PDF

Effects of chemical reaction on the polishing rate and surface planarity in the copper CMP

  • Kim, Do-Hyun;Bae, Sun-Hyuk;Yang, Seung-Man
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.2
    • /
    • pp.63-70
    • /
    • 2002
  • Chemical mechanical planarization (CMP) is the polishing process enabled by both chemical and mechanical actions. CMP is used in the fabrication process of the integrated circuits to achieve adequate planarity necessary for stringent photolithography depth of focus requirements. And recently copper is preferred in the metallization process because of its low resistivity. We have studied the effects of chemical reaction on the polishing rate and surface planarity in copper CMP by means of numerical simulation solving Navier-Stokes equation and copper diffusion equation. We have performed pore-scale simulation and integrated the results over all the pores underneath the wafer surface to calculate the macroscopic material removal rate. The mechanical abrasion effect was not included in our study and we concentrated our focus on the transport phenomena occurring in a single pore. We have observed the effects of several parameters such as concentration of chemical additives, relative velocity of the wafer, slurry film thickness or ash)tract ratio of the pore on the copper removal rate and the surface planarity. We observed that when the chemical reaction was rate-limiting step, the results of simulation matched well with the experimental data.

Synthesis of AlO(OH) Nano Colloids from γ-Al2O3 via Reversible Process (γ-Al2O3로부터 가역과정을 경유한 AlO(OH) 나노콜로이드의 합성)

  • Cho, Hyun-Ran;Kim, Sook-Hyun;Park, Byung-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.288-294
    • /
    • 2009
  • The platelet AlO(OH) nano colloids were prepared by hydrothermal reaction of the $\gamma-Al_2O_3$ obtained with dehydration of $\gamma$-AlO(OH) and dilute $CH_3COOH$ solution. In hydrothermal reaction process, reversible reaction was accompanied between $\gamma-Al_2O_3$ and AlO(OH), and hydrothermal reaction temperature, hydrothermal reaction time and $CH_3COOH$ concentration had an effect on the crystal structure, surface chemical property, surface area, pore characteristics and crystal morphology of the AlO(OH) nano colloid particles. In this study, it was investigated to the hydrothermal reaction condition of the AlO(OH) nano colloid for using catalyst support, heat resisting agent, adsorbents, binder, polishing agent and coating agent. The crystal structure, surface area, pore volume and pore size of the platelet AlO(OH) nano colloids were investigated by XRD, TEM, TG/DTA, FT-IR and $N_2$ BET method in liquid nitrogen temperature.

Dynamics of Gas-phase Hydrogen Atom Reaction with Chemisorbed Hydrogen Atoms on a Silicon Surface

  • 임선희;이종백;김유항
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1136-1144
    • /
    • 1999
  • The collision-induced reaction of gas-phase atomic hydrogen with hydrogen atoms chemisorbed on a silicon (001)-(2×1) surface is studied by use of the classical trajectory approach. The model is based on reaction zone atoms interacting with a finite number of primary system silicon atoms, which then are coupled to the heat bath, i.e., the bulk solid phase. The potential energy of the Hads‥Hgas interaction is the primary driver of the reaction, and in all reactive collisions, there is an efficient flow of energy from this interaction to the Hads-Si bond. All reactive events occur on a subpicosecond scale, following the Eley-Rideal mechanism. These events occur in a localized region around the adatom site on the surface. The reaction probability shows the maximum near 700K as the gas temperature increases, but it is nearly independent of the surface temperature up to 700 K. Over the surface temperature range of 0-700 K and gas temperature range of 300 to 2500 K, the reaction probability lies at about 0.1. The reaction energy available for the product states is small, and most of this energy is carried away by the desorbing H2 in its translational and vibrational motions. The Langevin equation is used to consider energy exchange between the reaction zone and the bulk solid phase.

Reaction Scheme on the Direct Synthesis of Methylchlorosilanes (Methylchlorosilanes의 직접 생산 반응에서 반응기구)

  • Kim, Jong Pal;Lee, Kwang Hyun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.291-296
    • /
    • 2018
  • Direct synthesis of methylchlorosilanes was developed by Rochow with addition of copper on the silicon surface as a catalyst and many research were followed. Most of research were focused on the increase of reaction activity through addition of promoters and concentrated on the increase of selectivity of DMDC. However, there are very few studies about the reaction mechanism. Although formation of DMDC was explained in literature, formation of other silanes were not mentioned at all. This reseach focused on the explanation about formation of all silanes obtained during direct reaction and TPD. Reaction paths were proposed by means of dissociative adsorption of methyl chloride and spillover of surface Cl and H. Surface silicon sites were considered as $=SlCl_2$ and $=Sl(CH_3)Cl$. The synthesis of all methylchlorosilanes were explained by the adsorption of methyl group on the silicon sites and by the surface diffusion of nearby Cl and H. The proposed reaction mechanism explains the formation of all silanes during the reaction and also during the TPD process.

Theoretical Study of Cycloaddition Reactions of C60 on the Si(100)-2×1 Surface

  • Rashid, Mohammad Harun Or;Lim, Chul-Tack;Choi, Cheol-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1681-1688
    • /
    • 2010
  • Density functional theory was adopted to study the various surface products and their reaction channels focusing on the on-dimer configuration which has not been suggested before. Energetic results show that the most stable on-dimer configuration is the 6,6-[2+2] structure which resembles the typical [2+2] cycloaddition product. The 6,6-[2+2] product is also more stable than any other possible surface structures of inter-dimer configuration further suggesting its existence. Potential energy surface scan along various possible initial surface reactions show that some of the possible on-dimer surface products require virtually no reaction barrier indicating that initial population of on-dimer surface products is thermodynamically determined. Various surface isomerization reaction channels exist further facilitating thermal redistribution of the initial surface products.

Effect of Reaction Temperature on Properties of CdS Thin Films Prepared by Chemical Bath Deposition (화학적으로 증착된 CdS 박막의 반응온도에 따른 물성)

  • Song, Woo-Chang
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.3
    • /
    • pp.112-117
    • /
    • 2005
  • In this paper, CdS thin films, which were widely used as a window layer of the CdS/CdTe and the $CdS/CuInSe_2$heterojunction solar cell, were grown by chemical bath deposition, and the structural, optical and electrical properties of the films on reaction temperatures were investigated. Cadmium acetate and thiourea were used as cadmium and sulfur source, respectively. And Ammonium acetate was used as the buffer solution. As the reaction temperatures were increased, the deposition rate of CdS fllms prepared by CBD was increased and the grain size was large due to increasing reaction rate in solution, also optical transmittance of the films in visible lights was increased on rising reaction temperatures.

Miniaturization of Polymerase Chain Reaction

  • Lee, Ji-Youn;Kim, Jae-Jeong;Park, Tai-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.4
    • /
    • pp.213-220
    • /
    • 2003
  • Polymerase chain reaction (PCR) is one of the most widely used analytical tool and is an important module that would benefit from being miniaturized and integrated onto diagnostic or analytical chips. There are potentially two different approaches for the miniaturization of the PCR module: chamber-type and flow-type micro-PCR. These miniaturized PCRs have distinct characteristics and advantages. In this article, we review the necessity of micro-PCR, the materials for the chip fabrication, the surface modification, and characteristics of the two types of micro-PCR. The motivation underlying the development of micro-PCR, the advantages and disadvantages of the various materials used in fabrication and the surface modification methods will be discussed. And finally, the precise features of the two different types of micro-PCR will be compared.

Optimum Conditions for Introducing Free Radical Polymerizable Methacrylate Groups on the MWCNT Surface by Michael Addition Reaction (MWCNT 표면에 Michael 부가 반응으로 자유 라디칼 중합 가능한 Methacrylate기 도입에 대한 최적 개질 조건)

  • Kim, Sunghoon;Park, Seonghwan;Kwon, Jaebeom;Ha, KiRyong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.83-90
    • /
    • 2015
  • In this study, we investigated optimum conditions for the introduction of a lot of free radical polymerizable methacrylate groups on the multi-walled carbon nanotube (MWCNT) surface. Carboxyl groups were introduced first on MWCNT surfaces by treating with a mixture of sulfuric acid and nitric acid with ultrasonic bath for 2 hours, and oxidized MWCNTs were reacted further with thionyl chloride followed by triethylenetetramine (TETA) to introduce amino groups on the oxidized MWCNT surface, to make MWCNT-$NH_2$. To introduce free radical polymerizable methacrylate groups on the MWCNT-$NH_2$, MWCNT-$NH_2$ was reacted with 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) by Michael addition reaction. We investigated progress of modification reactions for MWCNT by fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and elemental analysis (EA). We found maximum degree of Michael addition reactions between AHM and TETA grafted on MWCNT-$NH_2$ for 10:1 mol ratio and 8 hour reaction time in our reaction conditions.