DOI QR코드

DOI QR Code

Theoretical Study of Cycloaddition Reactions of C60 on the Si(100)-2×1 Surface

  • Received : 2010.02.19
  • Accepted : 2010.04.08
  • Published : 2010.06.20

Abstract

Density functional theory was adopted to study the various surface products and their reaction channels focusing on the on-dimer configuration which has not been suggested before. Energetic results show that the most stable on-dimer configuration is the 6,6-[2+2] structure which resembles the typical [2+2] cycloaddition product. The 6,6-[2+2] product is also more stable than any other possible surface structures of inter-dimer configuration further suggesting its existence. Potential energy surface scan along various possible initial surface reactions show that some of the possible on-dimer surface products require virtually no reaction barrier indicating that initial population of on-dimer surface products is thermodynamically determined. Various surface isomerization reaction channels exist further facilitating thermal redistribution of the initial surface products.

Keywords

References

  1. Buriak, J. M. Chem. Commun. 1991, 12, 1051.
  2. Yates, J. T Jr.Science 1998, 279, 335. https://doi.org/10.1126/science.279.5349.335
  3. Lopinski, G. P.; Moffatt, D J.; Wayner,D. D. M.; Wolkow, R. A. Nature 1998, 392, 909. https://doi.org/10.1038/31913
  4. Woodward, R. B.; Hoffman, R. The Conservation of Orbital Symmetry;Verlag Chemie: Weinheim, 1970.
  5. Nishijima, M.; Yoshinobu, J.; Tsuda, H.; Onchi, M. Surf. Sci.1987, 192, 383. https://doi.org/10.1016/S0039-6028(87)81134-2
  6. Yoshinobu, J.; Tsuda, H.; Onchi, M.; Nishijima,M. J. Chem. Phys. 1987, 87, 7332. https://doi.org/10.1063/1.453327
  7. Taylor, P. A.; Wallace, R. M.;Cheng, C. C.; Weinberg, W. H.; Dresser, M. J.; Choyke, W. J.; Yates,J. T., Jr. J. Am. Chem. Soc. 1992, 114, 6754. https://doi.org/10.1021/ja00043a020
  8. Li, L.; Tindall,C.; Takaoka, O.; Hasegawa, Y.; Sakurai, T. Phys. Rev. B: Condens. Matter 1997, 56, 4648. https://doi.org/10.1103/PhysRevB.56.4648
  9. Wolkow, R. A. Annu. Rev. Phys. Chem. 1999, 50, 413. https://doi.org/10.1146/annurev.physchem.50.1.413
  10. Mezhenny,S.; Lyubinetsky, I.; Choyke, W. J.; Wolkow, R. A.; Yates,J. T., Jr. Chem. Phys. Lett. 2001, 344, 7. https://doi.org/10.1016/S0009-2614(01)00535-8
  11. Imamura, Y.; Morikawa, Y.; Yamasaki, T.; Nakasuji, H. Surf. Sci.1995, 341, L1091. https://doi.org/10.1016/0039-6028(95)00792-X
  12. Liu; Q.; Hoffmann, R. J. Am. Chem. Soc.1995, 117, 4082. https://doi.org/10.1021/ja00119a024
  13. Sorescu, D. C.; Jordan, K. D. J. Phys. Chem. B 2000, 104, 8259. https://doi.org/10.1021/jp001353n
  14. Konecny, R.; Doren, D J. J. Am. Chem. Soc. 1997, 119, 11098. https://doi.org/10.1021/ja972247a
  15. Teplyakov, A. V.; Kong, M. J.; Bent, S. F. J. Am. Chem. Soc. 1997,119, 11100. https://doi.org/10.1021/ja972246i
  16. Teplyakov. A. V.; Kong, M. J.; Bent, S. F. J. Chem. Phys. 1998, 108, 4599. https://doi.org/10.1063/1.475870
  17. Hovis, J. S.; Liu, H. B.; Hamers, R. J. J. Phys. Chem. B 1998, 102,6873. https://doi.org/10.1021/jp982286o
  18. Choi, C. H.; Gordon, M. S. J. Am. Chem. Soc. 1999, 121, 1131.
  19. Choi, C. H.; Gordon, M. S. The Chemistry of Organic Silicon Compound; Rappoport, Z., Apeloig, Y., Eds.; John Wiley & Sons:New York, 2001; Vol. 3, Chapter 15, pp 821-852.
  20. Taguchi, Y.; Fujisawa, M.; Takaoka, T.; Okasa, T.; Nishijima, M. J. Chem. Phys. 1991, 95, 6870. https://doi.org/10.1063/1.461498
  21. Lopinski, G. P.; Fortier, T. M.; Moffatt, D. J.; Wolkow, R. A. J. Vac. Sci. Tech. A 1998, 16, 1037. https://doi.org/10.1116/1.581228
  22. Lopinski, G. P.; Moffatt, D. J.;Wolkow, R. A. Chem. Phys. Lett. 1998, 282, 305. https://doi.org/10.1016/S0009-2614(97)01317-1
  23. Rao, A. M.; Zhou, P.; Wang, K. A.; Hager, G. T.; Holden, J. M.;Wang, Y.; Lee, W. T.; Bi, X.-X.; Elkund, P. C.; Cornett, D. S.;Duncan, M. A.; Amster, I. J. Science 1993, 259, 955. https://doi.org/10.1126/science.259.5097.955
  24. Pekker, S.; Forro, L.; Mihaly, L.; Janossym, A. Solid State Commun. 1993, 90, 349. https://doi.org/10.1016/0038-1098(94)90796-X
  25. Cataldo, F. Polym. Int. 1999, 48, 143. https://doi.org/10.1002/(SICI)1097-0126(199902)48:2<143::AID-PI121>3.0.CO;2-L
  26. Davydov, V. A.; Kashevarova, L. S.; Rakhmaninam A. V.; Senyavin,V. M.; Ceolin, R.; Szwarc, H.; Allouchi, H.; Agafonov, V.Phys. Rev. B 2000, 61, 11936. https://doi.org/10.1103/PhysRevB.61.11936
  27. Wang, G. W.; Komatsu, K.; Murata, Y.; Shiro, M. Nature 1997,387, 583. https://doi.org/10.1038/42439
  28. Davydov, V. A.; Kashevarova, L. S.; Rakhmanina, A. V.; Senyavin,V. M.; Pronina, O. P.; Oleynikov, N. N.; Agafonov, V.; Céolin, R.;Allouchi, H.; Szwarc, H. Chem. Phys. Lett. 2001, 333, 224 https://doi.org/10.1016/S0009-2614(00)01379-8
  29. Kroto, H. W.; Heath, J. R.; O’Bren, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162. https://doi.org/10.1038/318162a0
  30. Li, Y. Z.; Chander, M.; Patrin, J. C.; Weaver, J. H.; Chibante, L.P. F.; Smalley, R. E. Phys. Rev. 1992, 45, 13837. https://doi.org/10.1103/PhysRevB.45.13837
  31. Wang, X. D.; Hashizume, T.; Shinohara, H.; Saito, Y.; Nishina, Y.; Sakurai, T. Phys. Rev. B 1993, 47, 15923. https://doi.org/10.1103/PhysRevB.47.15923
  32. Chen, D.; Sarid, D. Surf. Sci. 1995, 329, 206. d) Mority, P.; Ma, Y. R.; Upward, M. D.; Beton, P. H. Surf. Sci. 1998, 407, 27. https://doi.org/10.1016/S0039-6028(98)00082-X
  33. Beton, P. H.; Dunn, A. W.; Moriarty, P. Appl. Phys. Lett. 1995, 67, 1075. https://doi.org/10.1063/1.114469
  34. Yao, X.; Ruskell, T. G.; Workman. R. K.; Sarid, D.; Chen, D.Surf. Sci. 1996, 366, L743. https://doi.org/10.1016/0039-6028(96)00938-7
  35. Wang, H.; Zeng, C.; Li, Q.; Wang, B.;Yang, J.; Hou, J. G.; Zhu, Q. Surf. Sci. 1999, 442, L1024. https://doi.org/10.1016/S0039-6028(99)00977-2
  36. Yao, X.;Workman, R. K.; Peterson, C. A.; Chen, D.; Sarid, D. Appl. Phys. A1998, 66, S107. https://doi.org/10.1007/s003390051110
  37. Dunn, A. W.; Svensson, E. D.; Dekker, C. Surf. Sci. 2002, 498, 237. https://doi.org/10.1016/S0039-6028(01)01690-9
  38. Mority, P.; Upward, M. D.; Dunn. A. W.; Ma, Y. -R.; Beton, P. H.;Teehan, D. Phys. Rev. 1998, 57, 362.
  39. Sakamoto, K.; Kondo, D.; Ushimi, Y.; Harada, M.; Kimura, A.; Kakizaki, A.; Suto, S. Phys. Rev. 1999, 60, 2579. https://doi.org/10.1103/PhysRevB.60.2579
  40. Suto, S.; Sakamoto, K.; Kondo, D.; Wakita,T.; Kimura, A.; Kakizaki, A.; Hu, C. -W.; Kasuya, A. Surf. Sci.1999, 438, 242. https://doi.org/10.1016/S0039-6028(99)00576-2
  41. Seta, M. De.; Sanvitto, D.; Evangelisti, F. Phys. Rev. B 1999, 59, 9878. https://doi.org/10.1103/PhysRevB.59.9878
  42. Kondo, D.; Sakamoto, K.; Takeda, H.; Matsui, F.; Amemiya, K.;Ohta, T.; Uchida, W.; Kasuya, A. Surf. Sci. 2002, 514, 337. https://doi.org/10.1016/S0039-6028(02)01650-3
  43. Suto, S.; Sakamoto, K.; Wakita, T.; Hu, C. -W.; Kasuya, A. Phys. Rev. 1997, 56, 7439. https://doi.org/10.1103/PhysRevB.56.7439
  44. Sakamoto, K.; Kondo, D.; Harada, M.; Kimura, A.; Kakizaki, A.;Suto, S. Surf. Sci. 1999, 642, 433.
  45. Kawazoem Y.; Kamiyama, H.; Murayama, Y.; Ohno, K. Jpn. J. Appl. Phys. 1993, 32, 1433. https://doi.org/10.1143/JJAP.32.1433
  46. Yamaguchi, T. J. Phys. Soc. Jpn. 1993, 62, 3651. https://doi.org/10.1143/JPSJ.62.3651
  47. Yajima, A.; Tsukada, M. Surf. Sci. 1996, 357/358, 355. https://doi.org/10.1016/0039-6028(96)00181-1
  48. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56,2257. https://doi.org/10.1063/1.1677527
  49. Stevens, W. J.; Basch, H.; Krauss, M. J. Chem. Phys. 1984, 81,6026. https://doi.org/10.1063/1.447604
  50. Stevens, W. J.; Krauss, M.; Basch, H.; Jasien, P. G. Can. J. Chem. 1992, 70, 612. https://doi.org/10.1139/v92-085
  51. Cundari, T. R.; Stevens, W. J. J. Chem. Phys. 1993, 98, 5555. https://doi.org/10.1063/1.464902
  52. Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523. https://doi.org/10.1021/j100377a021
  53. Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1991, 95, 5853. https://doi.org/10.1063/1.461606
  54. Sunberg, K. R.; Ruedenberg, K. In Quantum Science; Calais, J. L., Goscinski, O., Linderberg, J., Ohrn, Y., Eds.; Plenum: New York, 1976.
  55. Cheung, L. M.; Sunberg, K. R.; Ruedenberg, K. Int. J. Quan. Chem. 1979, 16, 1103. https://doi.org/10.1002/qua.560160512
  56. Ruedenberg, K.; Schmidt, M.W.; Gilbert, M. M.; Elbert, S. T. Chem. Phys. 1982, 71, 41. https://doi.org/10.1016/0301-0104(82)87004-3
  57. Roos, B. O.; Taylor, P. R.; Siegbahn, E. M. Chem. Phys. 1980, 48, 157. https://doi.org/10.1016/0301-0104(80)80045-0
  58. Schmidt, M. W.; Gordon, M. S. Annu. Rev. Phys. Chem. 1998, 49, 233. https://doi.org/10.1146/annurev.physchem.49.1.233
  59. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  60. Stephens, P. J.; Devlin, F. J.; Chalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623. https://doi.org/10.1021/j100096a001
  61. Hertwig, R. H.; Koch, W. Chem. Phys. Lett. 1997,268, 345. https://doi.org/10.1016/S0009-2614(97)00207-8
  62. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A., Jr. J. Comp. Chem. 1993, 14, 1347. https://doi.org/10.1002/jcc.540141112
  63. Fletcher, G. D.; Schmidt, M. W.;Gordon, M. S. Adv. Chem. Physics 1999, 110, 267. https://doi.org/10.1002/9780470141694.ch4
  64. Shoemaker, J. R.; Burraf, L. W.; Gordon, M. S. J. Phys. Chem. A1999, 103, 3245. https://doi.org/10.1021/jp982600e
  65. Allinger, N. L.; Yuh, Y. H.; Lii, J. H. J. Am. Chem. Soc. 1989,111, 8551. https://doi.org/10.1021/ja00205a001
  66. Lii, J. H.; Allinger, N. L. J. Am. Chem. Soc. 1989, 111,8566. https://doi.org/10.1021/ja00205a002
  67. Lii, J. H.; Allinger, N. L. J. Am. Chem. Soc. 1989, 111,8576. https://doi.org/10.1021/ja00205a003
  68. Hawkins, J. M.; Meyer, A.; Lewis, T. A.; Loren, S.; Hollander, F. J.Science 1991, 252, 312 https://doi.org/10.1126/science.252.5003.312
  69. Imamura, Y.; Morikawa, Y.; Yamasaki, T.; Nakatsuji, H. Surf. Sci.1995, 341, L1091. https://doi.org/10.1016/0039-6028(95)00792-X
  70. Liu, Q.; Hoffmann, R. J. Am. Chem. Soc. 1995, 117, 4082. https://doi.org/10.1021/ja00119a024
  71. Yates, J. T., Jr. J. Phys: Condens. Matter 1991, 3, S143. https://doi.org/10.1088/0953-8984/3/S/024
  72. Bozack,M. J.; Taylor, P. A.; Choyke, W. J.; Yates, J. T, Jr. Surf. Sci.1986, 177, L933. https://doi.org/10.1016/0039-6028(86)90252-9
  73. Taylor, P. A.; Wallace, R. M.; Cheng, C. C.;Weinberg, W. H.; Dresser, M. J.; Choyke, W. J.; Yates, J. T., Jr. J. Am. Chem. Soc. 1992, 114, 6754. https://doi.org/10.1021/ja00043a020
  74. Clemen, L.; Wallace, R. M.;Taylor, P. A.; Dresser, M. J.; Choyke, W. J.; Weinberg, W. H.; Yates,J. T., Jr. Surf. Sci. 1992, 268, 205. https://doi.org/10.1016/0039-6028(92)90963-7
  75. Cheng, C. C.; Wallace, R. M.;Taylor, P. A.; Choyke, W. J.; Yates, J. T., Jr. J. Appl. Phys. 1990, 67, 3693. https://doi.org/10.1063/1.345326
  76. Cheng, C. C.; Choyke, W. J.; Yates, J. T., Jr. Surf. Sci. 1990,231, 289. https://doi.org/10.1016/0039-6028(90)90197-G
  77. Li, L.; Tindall, C.; Takaoka, O.; Hasegaw, Y.; Sakurai, T. Phys. Rev.1997, 56, 4648. https://doi.org/10.1103/PhysRevB.56.4648
  78. Hovis, J. S.; Lee, S.; Liu, H.; Hamers, R. J. J. Vac. Sci. Techno. B1997, 15, 1153. https://doi.org/10.1116/1.589431
  79. Craig, B. I.; Smith, P. V. Surf. Sci. 1992, 276, 174. https://doi.org/10.1016/0039-6028(92)90706-C
  80. Cramer, C.S.; Weiner, B.; Frenklach, M. J. Chem. Phys. 1993, 99, 1356. https://doi.org/10.1063/1.465381
  81. Fisher, A. J.; Blöchl, P. E.; Briggs, G. A. D. Surf. Sci. 1997, 374,298. https://doi.org/10.1016/S0039-6028(96)01190-9
  82. Pan, W.; Zhu, T.; Yang, W. J. Chem. Phys. 1997, 107, 3981. https://doi.org/10.1063/1.474753
  83. Sorescu, D. C.; Jordan, K. D. J. Phys. Chem. B 2000, 104, 8259. https://doi.org/10.1021/jp001353n
  84. Konecny, R.; Doren, D. J. Surf. Sci. 1998, 417, 169. https://doi.org/10.1016/S0039-6028(98)00554-8
  85. Lim, C.; Choi, C. H. J. Phys. Chem. B 2003, 107, 6853. https://doi.org/10.1021/jp034643n

Cited by

  1. Computational Assessment of 1,3-Dipolar Cycloaddition of Nitrile Oxides with Ethene and [60]Fullerene vol.84, pp.2, 2010, https://doi.org/10.3987/com-11-s(p)46