• 제목/요약/키워드: Surface carbon content

검색결과 518건 처리시간 0.029초

플라즈마질화 및 침질탄화처리한 탄소강의 경도와 내마모특성 (Characteristics of Hardness and Wear-Resistance of Plasma-Nitrided and Nitrocarburized Carbon Steels)

  • 김무길;정병호;박화순;이병찬;신성하;이재식
    • 열처리공학회지
    • /
    • 제12권2호
    • /
    • pp.166-173
    • /
    • 1999
  • Commercial carbon steels containing 0.2~0.55 wt.----C were plasma-nitrided or plasma nitrocarburized at $550^{\circ}C$ for 21.6Ks using $H_2-N_2$ or $H_2-N_2$-CO mixed gas respectively. The characteristics of hardening and wear-resistance of each treatment were studied and compared. And also microstructure of nitrided layer and nitrides formed in compound layer near surface were studied. All plasma-nitrided steels investigated showed remarkable increase of surface hardness with the increase of carbon content. But nitrocarburized steels resulted in higher surface-hardness than plasma-nitrided steels, which means that nitrocarburized has higher surface-hardening effect. Plasma-nitrided steels showed hardness increase in through-thickness direction near surface. And also nitrocarburized steels showed similar hardness distribution in through-thickness direction to that of plasma-nitrided steel. However, nitrocarburized steels had higher cross-sectional maximum-hardness than plasma-nitrided steels as much as 100Hv. Wear test showed that the amount of specific wear was reduced by both plasma-nitriding and nitrocarburized, showing that the amount of specific wear was not related to the hardness. But non-treated specimen showed that the amount of specific wear was related to the hardness.

  • PDF

열분해 연료유 및 PET 기반 활성탄을 이용한 NO 가스 센서의 감도 향상 연구 (NO Gas Sensor with Enhanced Sensitivity Using Activated Carbon Prepared from Pyrolysis Fuel Oil and Polyethylene Terephthalate)

  • 곽철환;서상완;김민일;임지선;강석창
    • 공업화학
    • /
    • 제32권1호
    • /
    • pp.42-48
    • /
    • 2021
  • 본 연구에서는 열분해 연료유를 이용하여 석유계 피치 기반 활성탄을 제조하였고, 이를 활용하여 일산화질소 가스 검출 센서를 개발하였다. 피치의 분자량 증가를 위해 피치 합성 시 중합 반응을 촉진시키는 폴리에틸렌 테레프탈레이트를 첨가하였다. 피치의 분자량 증가는 피치 기반 활성탄의 비표면적 및 미세기공 부피 증가에 기여하였고, 이는 활성탄 기반 센서의 일산화질소 가스 검출 특성 향상시켰다. 또한 테레프탈레이트 첨가 피치를 사용할 때 활성탄의 표면 산소 관능기 및 전도성 변화를 확인하고 테레프탈레이트 첨가가 활성탄의 물성 및 일산화질소 가스 검출 특성에 미치는 영향을 분석하였다.

카본블랙의 함량에 따른 송전용 반도전 재료의 기계적 특성 및 Smoothness (Mechanical Properties and Smoothness of Semiconductive Shield for Power Transmission by Carbon Black Content)

  • 이경용;양종석;이관우;최용성;박대희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.301-307
    • /
    • 2004
  • To improve mean-life and reliability of power cable in this paper, we have investigated stress-strain and smoothness showing by changing the content of carbon black that is semiconductive additives for underground power transmission. Specimens were made of sheet form with the three of existing resins and the nine of specimens for measurement. Stress-strain of specimens was measured by TENSOMETER 2000. A speed of measurement was 200[mm/min], ranges of stress and strain were $400(Kgf/cm^2)$ and 600[%]. In addition tests of stress-strain were progressed by aging specimens at air oven. Finally we wished to look for protrusion of specimens by using smoothness tester. According to increasing the content of carbon black from this experimental result, yield stress was increased, while strain was decreased. And stress-strain were decreased some after aging because of oxidation reaction of chemical defect. Lastly surface of specimens smoothed generally.

  • PDF

다양한 조성의 Sr 페라이트를 이용한 CO2분해 반응 특성 (Decomposition of Carbon Dioxide Using Sr Ferrites with Various Compositions)

  • 신현창;최정철;정광덕;최승철
    • 한국세라믹학회지
    • /
    • 제40권2호
    • /
    • pp.191-197
    • /
    • 2003
  • 지구온난화의 주요원인인 $CO_2$의 분해를 위해 다양한 조성의 Sr 페라이트를 이용하여 $CO_2$분해능을 비교하였다. Sr 페라이트를 80$0^{\circ}C$까지 환원시킨 결과, Sr 페라이트 내 Sr 함량이 감소할수록 높은 온도에서 환원반응이 시작되었지만, 온도가 증가함에 따라 그 환원반응성은 높아졌다. 환원된 Sr 페라이트를 이용한 $CO_2$분해 반응에서는 Sr:Fe 조성비에 따라CO나 C의 생성량이 달라졌다. 이 반응에서 Sr 페라이트 내 Sr의 비율이 감소할수록 CO의 생성량은 증가하였으며, Sr의 비율이 증가할수록 페라이트 표면에 많은 양의 C가 흡착되었다. 따라서, $CO_2$분해 반응에 Sr 페라이트를 적용할 경우, 사용 조건에 따라 Sr:Fe의 조성비를 제어할 필요가 있다.

Influence of Surface Treatment of Multi-walled Carbon Nanotubes on Interfacial Interaction of Nanocomposites

  • Kim, Ki-Seok;Park, Soo-Jin
    • Carbon letters
    • /
    • 제11권2호
    • /
    • pp.102-106
    • /
    • 2010
  • In this work, the effect of aminized multi-walled carbon nanotubes (NH-MWNTs) on the mechanical interfacial properties of epoxy nanocomposites was investigated by means of fracture toughness, critical stress intensity factor ($K_{IC}$), and impact strength testing, and their morphology was examined by scanning electron microscope (SEM). It was found that the incorporation of amine groups onto MWNTs was confirmed by the FT-IR and Raman spectra. The mechanical interfacial properties of the epoxy nanocomposites were remarkably improved with increasing the NH-MWNT content. It was probably attributed to the strong physical interaction between amine groups of NH-MWNTs and epoxide groups of epoxy resins. The SEM micrographs showed that NH-MWNTs were uniformly embed and bonded with epoxy resins, resulted in the prevention of the deformation and crack propagation in the NH-MWNTs/epoxy nanocomposites.

Effect of Graphitic Nanofibers on Interfacial Adhesion and Fracture Toughness of Carbon Fibers-reinforced Epoxy Composites

  • Kim, Seong-Hwang;Park, Soo-Jin
    • Composites Research
    • /
    • 제34권2호
    • /
    • pp.82-87
    • /
    • 2021
  • The mechanical properties of carbon fiber-reinforced epoxy composites (CFRPs) are greatly dependent on the interfacial adhesion between the carbon fibers and the epoxy matrix. Introducing nanomaterial reinforcements into the interface is an effective approach to enhance the interfacial adhesion of CFRPs. The main purpose of this work was to introduce graphitic nanofiber (GNFs) between an epoxy matrix and carbon fibers to enhance interfacial properties. The composites were reinforced with various concentrations of GNFs. For all of the fabricated composites, the optimum GNF content was found to be 0.6 wt%, which enhanced the interlaminar shear strength (ILSS) and fracture toughness (KIC) by 101.9% and 33.2%, respectively, compared with those of neat composites. In particular, we observed a direct linear relationship between ILSS and KIC through surface free energy. The related reinforcing mechanisms were also analyzed and the enhancements in mechanical properties are mainly attributed to the interfacial interlocking effect. Such an effort could accelerate the conversion of composites into high performance materials and provide fundamental understanding toward realizing the theoretical limits of interfacial adhesion and mechanical properties.

Photocatalytic Oxidation for Organic Dye using Phenol Resin-based Carbon-titania Composites

  • Oh, Won-Chun;Na, Yu-Ri
    • 한국세라믹학회지
    • /
    • 제45권1호
    • /
    • pp.36-42
    • /
    • 2008
  • Carbon/$TiO_2$ composite photocatalysts were thermally synthesized with different mixing ratios of anatase to phenol resin through an ethanol solvent dissolving method. The XRD patterns revealed that only anatase phase can be identified for Carbon/$TiO_2$ composites. The diffraction peaks of carbon were not observed, however, due to the low carbon content on the $TiO_2$ surfaces and the low crystallinity of amorphous carbon. The results of chemical elemental analyses of the Carbon/$TiO_2$ composites showed that most of the spectra for these samples gave stronger peaks for carbon and Ti metal than that of any other elements. The BET surface area increases to the maximum value of $488\;m^2/g$ with the area depending on the amount of phenol resin. From the SEM images, small $TiO_2$ particles were homogeneously distributed to a composite cluster with the porosity of phenol resin-based carbon. From the photocatalytic results, the MB degradation should be attributed to the three kinds of synergetic effects, such as photocatalysis, adsorptivity, and electron transfer by light absorption between supporter $TiO_2$ and carbon.

그래핀/탄소나노튜브(FCN) 첨가에 따른 Polyamide-Nylon 6의 기계적 특성에 미치는 영향 (Effect of Adding Graphene/Carbon Nanotubes (FCN) on the Mechanical Properties of Polyamide-Nylon 6)

  • 여승준;신해름;노우승;김만태
    • 한국산업융합학회 논문집
    • /
    • 제26권6_3호
    • /
    • pp.1297-1303
    • /
    • 2023
  • Research on enhancing the mechanical strength, lightweight properties, electrical conductivity, and thermal conductivity of composite materials by incorporating nano-materials is actively underway. Thermoplastic resins can change their form under heat, making them highly processable and recyclable. In this study, Polyamide-Nylon 6 (PA6), a thermoplastic resin, was utilized, and as reinforcing agents, fused carbon nano-materials (FCN) formed by structurally combining Carbon Nanotube(CNT) and Graphene were employed. Nano-materials often face challenges related to cohesion and dispersion. To address this issue, Silane functional groups were introduced to enhance the dispersion of FCN in PA6. The manufacturing conditions for the composite materials involved determining the use of a dispersant and varying FCN content at 0.05 wt%, 0.1 wt%, and 0.2 wt%. Tensile strength measurements were conducted, and FE-SEM analysis was performed on fracture surfaces. As a result of the tensile strength test, it was confirmed that compared to pure PA6, the strength of the polymer composite with a content of 0.05 wt% was improved by about 60%, for 0.1 wt%, about 65%, and for 0.2 wt%, the strength was improved by 50%. Also, when compared according to the content of FCN, the best strength value was shown when 0.1 wt% was added. The elastic modulus also showed an improvement of about 15% in the case of surface treatment compared to the case without surface treatment, and an improvement of about 70% compared to pure PA6. Through FE-SEM, it was confirmed that the matrix material and silane-modified nanomaterial improved the dispersibility and bonding strength of the interface, helping to support the load evenly and enabling effective stress transfer.

AISI 316L강의 저온 플라즈마침질탄화처리 시 가스조성과 처리시간이 표면특성에 미치는 영향 (Influence of Gas Composition and Treatment Time on the Surface Properties of AISI 316L Austenitic Stainless Steels During Low-Temperature Plasma Nitrocarburizing Treatment)

  • 이인섭
    • 대한금속재료학회지
    • /
    • 제47권11호
    • /
    • pp.716-721
    • /
    • 2009
  • The major drive for the application of low-temperature plasma treatment in nitrocarburizing of austenitic stainless steels lies in improved surface hardness without degraded corrosion resistance. The low-temperature plasma nitrocarburizing was performed in a gas mixture of $N_{2}$, $H_{2}$, and carbon-containing gas such as $CH_{4}$ at $450^{\circ}C$. The influence of the processing time (5~30 h) and $N_{2}$ gas composition (15~35%) on the surface properties of the nitrocarburized layer was investigated. The resultant nitrocarburized layer was a dual-layer structure, which was comprised of a N-enriched layer (${\gamma}_N$) with a high nitrogen content on top of a C-enriched layer (${\gamma}_C$) with a high carbon content, leading to a significant increase in surface hardness. The surface hardness reached up to about $1050HV_{0.01}$, which is about 4 times higher than that of the untreated sample ($250HV_{0.01}$). The thickness of the hardened layer increased with increasing treatment time and $N_{2}$ gas level in the atmosphere and reached up to about $25{\mu}m$. In addition, the corrosion resistance of the treated samples without containing $Cr_{2}N$ precipitates was enhanced than that of the untreated samples due to a high concentration of N on the surface. However, longer treatment time (25% $N_{2}$, 30 h) and higher $N_{2}$ gas composition (35% $N_{2}$, 20 h) resulted in the formation of $Cr_{2}N$ precipitates in the N-enriched layer, which caused the degradation of corrosion resistance.

스퍼터링법으로 합성한 BCN 박막의 내식성 (Corrosion Behavior of Boron-Carbon-Nitride Films Synthesized by Magnet Sputtering)

  • 변응선;손명숙;이구현;권식철
    • 한국표면공학회지
    • /
    • 제36권3호
    • /
    • pp.229-233
    • /
    • 2003
  • Boron-Carbon-Nitrogen (B-C-N) system is an attractive ternary material since it has not only an extremely high hardness but also a number of other prominent characteristics such as chemical inertness, elevated melting point, and low thermal expansion. In this paper, the corrosion behavior of B-C-N thin films in aqueous solution was investigated B-C-N films with different composition were deposited on a platinum plate by magnetron sputtering in the thickness range of 150-280 nm. In order to understand effect of pH of solutions, $BC_{2.\;4}N$ samples were immerged in 1M HCl, 1M NaCl, and 1M NaOH solution at 298k, respectively. BCN samples with different carbon contents were exposed to 1M NaOH solutions to investigate effect of chemical composition on corrosion resistance. Corrosion rates of samples were measured by ellipsometry, From results, optical constant of $BC_{2,\;4}N$ films was found to be $N_2=2.110-0.295i$. The corrosion rates of $Bi_{1.\;0}C_{2.\;4}N_{1.\;0}$ films were NaOH>NaCl>HCl in orders. With increasing carbon content in B-C-N films, the corrosion resistance of B-C-N films was enhanced. The lowest corrosion rate was obtained for $B_{1.\;0}C_{4.\;4}N_{1.\;9}$ film.