• Title/Summary/Keyword: Surface boundary scattering

Search Result 71, Processing Time 0.022 seconds

Analysis of Electromagnetic Scattering by Resistive Strip Grating with Zero Resistivity at the Strip-Edges On a Grounded 2 Dielectric Layers (접지된 2개의 유전층위에 저항띠 양끝에서 0으로 변하는 저항띠 격자구조에서의 전자파산란 해석)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.152-158
    • /
    • 2006
  • In this paper, electromagnetic scattering problems by a resistive strip grating with zero resistivity at the strip-edges on a grounded 2 dielectric layers according as strip width and spacing, relative permittivity, thickness of dielectric layers, and incident angles of a electric wave are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) known as a numerical procedure. The scattered electromagnetic fields are expanded in a series of floguet mode functions. The boundary conditions are applied to obtain the unknown field coefficients and the resistive boundary condition is used for the relationship between the tangential electric field and the electric current density on the strip. The tapered resistivity of resistive strips varies zero resistivity at strip edges. Then the induced surface current density on the resistive strip is expanded in a series of Chebyshev polynomials of the second kind. The normalized reflected power with zero resistivity in this paper show in good agreement with those of existing paper.

  • PDF

Surface Segregation of Sulfur in Ti and ti-Aluminide Alloys (티타늄과 티타늄 알루니마이드 합금에서 황의 표면석출)

  • 이원식;이재희
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.1
    • /
    • pp.39-47
    • /
    • 1996
  • The segregation of S in electrotransport-purified polycrystaline $\alpha$-Ti and Ti-aluminide alloys has been studied by Auger electron spectroscopy(AES), Ion scattering spectroscopy(ISS) and Secondary ion mass spectrometry(SIMS) in the temperature range extending from 20 to $1000^{\circ}C$. The chemisorbed oxygen and carbon on Ti were observed to disappear at T>$400^{\circ}C$ after which the S signal increased to levels approaching 0.5 monolayer. At lower temperatures the presence of the surface oxygen and carbon appeared to inhibit the segregation, presumably because there were no available surfaces sites for the S emerging from the bulk. The activation energy for the S segregation in pure polycrystaline Ti was determined to be 16.7 kcal/mol, which, when compared to S segretation from single-crystal Ti, is quite small and suggests grain boundary or defect diffusion segregation kinetics. In the Ti-aluminide alloys, the presence of Al appeared to enhance the retention of surface oxygen which, in turn, substantially reduced the S segretation. The $\gamma$ alloy, with its high Al content, exhibited the greatest retention of surface oxygen and the smallest quantity of the S segregation(T$\simeq1000^{\circ}C$).

  • PDF

Wave Energy Absorption by a Circular Cylinder Oscillating Water Column Device (원통형 진동수주 파력발전장치에 의한 파 에너지 흡수)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.1
    • /
    • pp.8-18
    • /
    • 2002
  • In this paper, wave energy absorption of OWC(oscillating water column) device is analyzed. The analytic model consists of a partially immersed circular vertical cylinder open at its end and an air turbine connected with the air chamber. The boundary value problem is decomposed into scattering problem related to scattering by an incident wave in the absence of a pressure variation and radiation problem describing the flow due to an oscillating pressure in the absence of an incident wave. By invoking the continuity of an air flow inside the chamber, the oscillating pressure in a chamber is derived. With oscillating pressure, the mean power absorbed by OWC device and the capture width are obtained. In numerical calculation, the induced volume flux across the internal free surface of the chamber in the scattering and radiation problem and the maximum capture width are compared with various design parameters such as radius and submergence depth of chamber and wave conditions. The maximum capture width obtained by choosing the optimal value of turbine constant occurs at the first resonant mode (Helmholtz mode) among the natural frequencies of a circular cylinder chamber.

Analysis of the TE Scattering by a Resistive Strip Grating Over a Grounded Dielectric Plane (접지된 유전체 평면위의 저항띠 격자구조에 의한 TE 산란 해석)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.198-204
    • /
    • 2006
  • In this paper, TE(transverse electric) scattering problems by a resistive strip grating on a grounded dielectric plane according to the strip width and grating period, the relative permittivity and thickness of dielectric layer, and incident angles of a TE plane wave are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) known as a numerical procedure. The induced surface current density is simply expanded in a Fourier series by using the exponential function as a simple function. The reflected power gets increased according as the relative permittivity and thickness of dielectric multilayers gets increased, the sharp variations of the reflected power are due to resonance effects were previously called wood's anomallies[7]. To verify the validity of the proposed method, the numerical results of normalized reflected power for the uniform resistivity R = 0 as a conductive strip case show in good agreement with those in the existing paper.

  • PDF

Wave Control by an Array of Porous Dual Cylindrical Structures (투과성 이중 원통구조물 배열에 의한 파랑제어)

  • CHO IL-HYOUNG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.7-14
    • /
    • 2004
  • The interaction of incident manochromatic waves with an array of N surface-piercing porous dual cylindrical structures is investigated in the frame of three-dimensional linear potential theory. The dual cylindrical structure is camposed of concentric two cylinders. The exterior cylinder is porous and the interior cylinder is impermeable. The fluid domain is divided into N+1 regions i.e. a single exterior region and N interior regions. The diffraction potentials in each region representing the scattering of incident waves by an array of porous cylindrical structures are expressed by the Fourier Bessel series. The unknown coefficients in each region are determined by applying the porous boundary condition and continuity of mass flux at the matching boundary. It is found that an array of porous cylindrical structures reduces both the wave forces and the wave run-up, and shows the excellent performance of wave blocking. The results show that various types of breakwater exchanging seawater are prospective by controlling the porosity and the configuration of cylindrical structures.

Submarine bistatic target strength analysis based on bistatic-to-monostatic conversion (양상태-단상태 변환 기반 잠수함 양상태 표적강도 해석)

  • Kookhyun Kim;Sung-Ju Park;Keunhwa Lee;Dae-Seung Cho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.138-144
    • /
    • 2024
  • This paper presents a bistatic to monostatic conversion technique to analyze the bistatic target strength of submarines. The technique involves determining the transmission path length of acoustic waves, which are emitted from a source, scattered off an underwater target, and eventually received by a receiver. By generating a corresponding virtual scattering surface, this method effectively transforms the target strength analysis problem from bistatic to monostatic. The converted monostatic target strength problem can be assessed using a well-established monostatic numerical methods. The bistatic target strength analysis for Benchmark Target Strength Simulation (BeTTSi), a widely used target strength model were performed. The results were compared with those calculated by boundary element methods and Kirchhoff approximation, and confirmed the validity and the practical applicability of the proposed analysis technique for evaluating submarine target strength.

Analysis of a Tapered Rectangular Waveguide for V to W Millimeter Wavebands

  • Lee, Sangsu;Son, Dongchan;Kwon, Jae-Yong;Park, Yong Bae
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.4
    • /
    • pp.248-253
    • /
    • 2018
  • An electromagnetic boundary-value problem of a tapered rectangular waveguide is rigorously solved based on eigenfunction expansion and the mode-matching method. Scattering parameters of the tapered rectangular waveguide are represented in a series form and calculated in terms of different rectangular waveguide combinations. Computation is performed to analyze reflection and transmission characteristics. Conductor loss by surface current density is also calculated and discussed.

Minimization of Shadow Zone for Hull Mounted Sonar (선체 고정형 소나의 음영 구역 최소화)

  • Lim, Se-Han;Han, Yun-Hoo;Jang, Chan-Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.211-217
    • /
    • 2010
  • This paper introduces the Hull Mounted Sonar Vertical Scanning(HMS Verscan) technique to overcome the limitation of target detection in short range shadow zone. Numerical experiments were done with the HMS Verscan taking advantage of the vertical beamforming technique for two-dimension hydrospace(range-depth). For numerical experiments, ray model and high-frequency monostatic reverberation model were used. HMS Verscan increased a sound pressure level at the short range shadow zone through reflections at the sea surface and seafloor. Inclusion of the boundary scattering improved target detection due to the sound reflected into the shadow zone.

An Efficient Analysis of Unbounded Scattering Field Using Three Dimensional Boundary Element Method (3차원 경계요소법을 이용한 무경계 산란장의 효율적 해석)

  • 박동희;김정기
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.3
    • /
    • pp.14-21
    • /
    • 1994
  • In this paper, a numerical method to be obtain the radar cross section(RCS) of three- dimensional bodies with arbitrary geometry and material compositions on the electromagnetic field with arbitrary incident angle is described. The RCS is obtained by solving the individual surface integral equation about multilayers scatterer using the three-dimensional bonudary element method(BEM). To show propriety and usefulness as to the three-dimensional BEM in this paper, the choice of a geometry is a multi-regular hexahedron and multi-right-angled hexahedron out of oblique incident electric field, and is considered to apply to every condition with loss sufficiently.

  • PDF

Acoustic Analysis of Plenum Fan using Kirchhoff-BEM (Kirchhoff-BEM 을 이용한 Plenum Fan 소음해석)

  • Song, W.-S.;Jang, G. J.;Lee, S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.89-93
    • /
    • 2004
  • To numerically construct the sound fields by a plenum fan mostly found in Air-Handling Unit (AHU), the Kirchhoff-BEM approach was applied to the near-field data of a turbo fan. The scattering effects were found to be significant by the plenum box structure for high-frequency components of source. The directivity petterns and sound pressure levels were also dependent upon the helmholts number which must be considered of the design stage for sound reduction program.

  • PDF