• 제목/요약/키워드: Surface adsorption

검색결과 2,330건 처리시간 0.034초

Removal of Pb(II) and Cd(II) From Aqueous solution Using Oxidized Activated Carbons Developed From Pecan Shells.

  • Youssef, A.M.;EL-Khouly, Sahar M.;El-Nabarawy, Th.
    • Carbon letters
    • /
    • 제9권1호
    • /
    • pp.8-16
    • /
    • 2008
  • Oxidized activated carbons were prepared by reacting steam-activated carbon developed from pecan shells with nitric acid of varying strength (15, 30, 45 and 60%). The textural properties and the chemistry of the surface of the non-oxidized and of the oxidized carbons were determined from nitrogen adsorption and base neutralization capacities. The uptake of Pb(II) and Cd(II) from aqueous solution by these carbons was determined by kinetic and equilibrium experiments as well as by the column method. Treatment with nitric acid brought about drastic decrease in surface area and remarkable increase in the pore size of the carbon with these changes depending on the strength of nitric acid. Nitric acid increased the surface acidity by developing new surface oxygen functional groups of acidic nature. $HNO_3$-oxidized carbons exhibited high adsorption capacities for Pb(II) and Cd(II). The adsorption of these ions increased with the decrease of the surface pH of the carbon and with the increase of the solution pH from 2.5 to 6 and 7. The amount adsorbed from lead and cadmium was also related to the amount of surface acidity, the pH of the point of zero charge and on some metal ion parameters. Cadmium and lead uptake by the investigated carbons followed pseudo-second order model and the equilibrium sorption data fitted Langmuir adsorption model.

황해 근소만 조간대 퇴적물에서 인산염 흡착이 저층플럭스에 미치는 영향 (The Effects of Adsorption on Phosphate Benthic Fluxes in the Intertidal Sediments of Keunso Bay, Yellow Sea)

  • 김동선;김경희
    • Ocean and Polar Research
    • /
    • 제31권3호
    • /
    • pp.247-255
    • /
    • 2009
  • We measured phosphate benthic fluxes and conducted phosphate adsorption experiments in order to find out the effects of adsorption on phosphate benthic fluxes in the intertidal sediments of Keunso Bay during summer and winter. Organic carbon contents showed little variation with season at St. S1, but noticeable changes were observed at St. S2, which were three times higher in winter than in summer. The higher organic carbon contents in winter resulted from the bloom of benthic algae in surface sediments. Pore water phosphate concentrations were much higher in summer than in winter. The higher phosphate concentration in summer was probably due to the faster remineralization rate of organic matter in summer. At St. S1, benthic fluxes of phosphate showed a negative value in summer and a positive value in winter. However, St. S2 had a negative benthic flux both in summer and winter. The negative benthic flux was ascribed to the phosphate adsorption on iron oxides in surface sediments. The equilibrium concentrations of phosphate obtained from the adsorption experiment were three times higher at St. S1 than at St. S2. The relatively high adsorption coefficient and low equilibrium concentration indicated that phosphate was strongly adsorbed on the surface sediments of Keunso Bay. The strong adsorption affinity significantly reduced benthic fluxes of phosphate in the intertidal sediments.

Revisiting $H_2$ and CO Interactions with Pt(111) Surfaces

  • Kim, Je-Heon;Jo, Sam-K.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.203-203
    • /
    • 2011
  • The importance of stepped single-crystal surfaces as model catalysts has been well recognized [1]. We re-investigated the adsorption properties of $H_2$ and CO, most important species in platinum-based catalysts, on nearly defect-free and highly stepped surfaces of one and the same Pt(111) crystal. While both being symmetric and single-peaked from the nearly defect-free surface, temperature-programmed desorption (TPD) spectra from the highly stepped surface saturated at 90 K with H and CO were triply- and doubly-peaked, respectively. Once pre-adsorbed, CO preempted step and then terrace sites, inhibiting the dissociative $H_2$ adsorption completely. Pre-adsorbed H inhibited the CO adsorption on terrace sites only, leaving defect sites intact for CO adsorption even at the saturation H precoverage. On defect-free Pt(111), while pre-adsorbed CO inhibited the dissociative $H_2$ adsorption completely, pre-adsorbed H could not inhibit the CO adsorption completely. These intriguing, but interesting results are discussed in terms of energetics/kinetics and the role of surface step sites in the dissociative adsorption of $H_2$ on Pt(111) [2].

  • PDF

Effect of the Thermal Etching Temperature and SiO2/Al2O3 Ratio of Flexible Zeolite Fibers on the Adsorption/desorption Characteristics of Toluene

  • Ji, Sang Hyun;Yun, Ji Sun
    • 한국재료학회지
    • /
    • 제29권3호
    • /
    • pp.143-149
    • /
    • 2019
  • To develop flexible adsorbents for compact volatile organic compound (VOC) air purifiers, flexible as-spun zeolite fibers are prepared by an electrospinning method, and then zeolite particles are exposed as active sites for VOC (toluene) adsorption on the surface of the fibers by a thermal surface partial etching process. The breakthrough curves for the adsorption and temperature programmed desorption (TPD) curves of toluene over the flexible zeolite fibers is investigated as a function of the thermal etching temperature by gas chromatography (GC), and the adsorption/desorption characteristics improves with an increase in the thermal surface etching temperature. The effect of acidity on the flexible zeolite fibers for the removal of toluene is investigated as a function of the $SiO_2/Al_2O_3$ ratios of zeolites. The acidity of the flexible zeolite fibers with different $SiO_2/Al_2O_3$ ratios is measured by ammonia-temperature-programmed desorption ($NH_3-TPD$), and the adsorption/desorption characteristics are investigated by GC. The results of the toluene adsorption/desorption experiments confirm that a higher $SiO_2/Al_2O_3$ ratio of the flexible zeolite fibers creates a better toluene adsorption/desorption performance.

Adsorption of phosphate in water on a novel calcium hydroxide-coated dairy manure-derived biochar

  • Choi, Yong-Keun;Jang, Hyun Min;Kan, Eunsung;Wallace, Anna Rose;Sun, Wenjie
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.434-442
    • /
    • 2019
  • The present study investigated a novel calcium hydroxide-coated dairy manure-derived biochar (Ca-BC) for adsorption of phosphate from water and dairy wastewater. The Ca-BC showed much higher adsorption of phosphate than that of dairy manure-derived biochar. The Ca-BC possessed mainly the calcium hydroxide and various functional groups resulting in high reactivity between phosphate and calcium hydroxide in the Ca-BC. The adsorption of phosphate onto Ca-BC followed pseudo-second order kinetic and Freundlich isotherm models indicating chemisorptive interaction occurred on energetically heterogeneous surface of Ca-BC. The maximum adsorption capacity of the Ca-BC was higher than those of iron oxide and zinc oxide-coated biochars, but lower than those of CaO- and MgO-coated biochars. However, the Ca-BC showed high reactivity per surface area for adsorption of phosphate indicating importance of surface functionalization of biochar. On the other hand, the adsorption of phosphate in dairy wastewater on Ca-BC was lower than that in water owing to competition between other anions in wastewater and phosphate. Overall, the Ca-BC would be a low cost and effective adsorbent for recovery of phosphate from water and wastewater.

Ethoxylated Alkylaminoanthraquinone에 의한 PET의 표면개질 - Spacer의 길이에 따른 흡착거동 - (Surface Modification of PET with Ethoxylated Alkylaminoanthraquinone - Effect of Spacer on the Adsorption Behavior -)

  • 최영주;윤남식
    • 한국염색가공학회지
    • /
    • 제15권3호
    • /
    • pp.185-191
    • /
    • 2003
  • Surface modification of poly(ethylene terephthalate) (PEI) films by treatment with ethoxylated alkylaminoanthraquinoes which was synthesized by the reaction of 1-aminoanthraquinone with poly(ethylene glycol) via a series of methylene spacer were investigated. The synthesized ethoxylated alkylaminoanthraquinones showed definite cloud point as in nonionic surfactants, and the adsorption of the compounds on PET increased near the cloud point. At same temperature the adsorption increased with the length of methylene spacer; hexyl-octyl-, and decyl-. The adsorption was limited to the extreme surface of PET film, which made the surface of PET film hydrophillic by reducing water contact angle.

단백질 칩 기판의 표면 스크래칭 효과 (Effects of Scratching on the Surface of Protein Chip Plates)

  • 현준원;황정일
    • 한국표면공학회지
    • /
    • 제40권2호
    • /
    • pp.98-102
    • /
    • 2007
  • [ $NiCl_2$ ] and poly-L-lysine coated protein chip plates have been fabricated using a spin coating system. Water has been used as solvent and scratching effects on glass slides and ITO have been investigated. We also observed the surface properties of $NiCl_2$ and poly-L-lysine coated slides by using PSA(Particle size analyzer) and AFM(Atomic force microscope). The AFM results imply that the surface patterns created in the spin coating system determine the protein adsorption. Adsorption of histidine-tagged KRS proteins immobilized on glass slides and ITO was analyzed using a BAS image system. The results suggest that the scratching effect was increased ability of protein adsorption.

The Alkali Metal Interactions with MgO Nanotubes

  • Beheshtian, Javad;Peyghan, Ali Ahmadi;Bagheri, Zargham;Kamfiroozi, M.
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1925-1928
    • /
    • 2012
  • Adsorption of alkali metals (Li, Na, and K) on the surface of magnesium oxide nanotubes (MgONTs) with different diameters was investigated using density functional theory. According to the obtained results, the most stable adsorption site was found to be atop the oxygen atom of the tube surface with adsorption energies in the range of -0.25 to -0.74 eV. HOMO-LUMO gap ($E_g$) of the tubes dramatically decreases upon the adsorption of the alkali metals, resulting in enhancement of their electrical conductivity enhancement. The order of $E_g$ decrement caused by the metal adsorption is as follows: K > Na > Li. The results suggest that the MgONTs were transformed from semi-insulator to semiconductor upon the alkali metal adsorption. Increasing the tube diameter, the HOMO/LUMO gap of the pristine tube is enhanced and adsorption energies of the alkali metals are decreased.

다공성 원료를 사용한 석고보드의 흡습 특성 (Hygroscopic Characteristic of Gypsum Boards Using Porous Materials)

  • 정의종;이종규;정덕수;추용식;송훈
    • 한국재료학회지
    • /
    • 제19권10호
    • /
    • pp.538-543
    • /
    • 2009
  • Active clays, Diatomite, bentonite and zeolite were used as porous materials for fabricating hygroscopic gypsum boards. Pohang active clay and Cheolwon diatomite showed excellent characteristics of moisture adsorption and desorption. These characteristics were caused by higher surface area and pore volume of porous materials. Moisture adsorption content of gypsum board with 10% active clay(P1) was 62.0 g/m$^2$, and moisture desorption content was 50.2 g/m$^2$. Moisture adsorption content of gypsum board with 10% diatomite(P) was 59.5 g/m$^2$, and moisture desorption content was 49.0 g/m$^2$. Moisture adsorption contents of gypsum boards with porous materials were higher than that moisture desorption contents of gypsum board without porous materials. Correlation coefficient between surface area and moisture adsorption content of gypsum boards was 0.98. Also, correlation coefficient between surface area and moisture desorption content of gypsum boards was 0.97. Moisture adsorption and desorption contents were influenced by surface area and pore volume of the gypsum boards, and surface area had a larger effect on moisture adsorption and desorption.

Coverage-dependent adsorption behavior of monoethanolamine on TiO2 (110)

  • Sohn, So-Dam;Kim, Su-Hwan;Kwak, Sang-Kyu;Shin, Hyung-Joon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.126-126
    • /
    • 2016
  • Understanding adsorption behavior organic molecules at oxide surfaces is very important for the application of organic-inorganic hybrid materials. Recently, monoethanolamine (MEA) adsorbed on $TiO_2$ surface has received great interests because it can lower the work function of $TiO_2$ in photo-electronic devices such as OLED and solar cells. In this study, we investigated the role of surface defects in adsorption behaviors of MEA at the rutile $TiO_2$ (110) surface by combined study of scanning tunneling microscopy and density functional theory calculations. Our results revealed that oxygen vacancy is the most stable adsorption site for MEA on $TiO_2$ (110) surface at low coverage. As coverage increases, the oxygen vacancies are occupied with the molecules and MEA molecules start to adsorb at Ti rows at higher coverages. Our results show that the defects at oxide surfaces and the intermolecular interactions are important factors for determining stable adsorption structure of MEA at $TiO_2$ (110) surfaces.

  • PDF