Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.6.1925

The Alkali Metal Interactions with MgO Nanotubes  

Beheshtian, Javad (Department of Chemistry, Shahid Rajaee Teacher Training University)
Peyghan, Ali Ahmadi (Young Researchers Club, Islamic Azad University)
Bagheri, Zargham (Physics group, Science department, Islamic Azad University)
Kamfiroozi, M. (Department of Chemistry, Islamic Azad University)
Publication Information
Abstract
Adsorption of alkali metals (Li, Na, and K) on the surface of magnesium oxide nanotubes (MgONTs) with different diameters was investigated using density functional theory. According to the obtained results, the most stable adsorption site was found to be atop the oxygen atom of the tube surface with adsorption energies in the range of -0.25 to -0.74 eV. HOMO-LUMO gap ($E_g$) of the tubes dramatically decreases upon the adsorption of the alkali metals, resulting in enhancement of their electrical conductivity enhancement. The order of $E_g$ decrement caused by the metal adsorption is as follows: K > Na > Li. The results suggest that the MgONTs were transformed from semi-insulator to semiconductor upon the alkali metal adsorption. Increasing the tube diameter, the HOMO/LUMO gap of the pristine tube is enhanced and adsorption energies of the alkali metals are decreased.
Keywords
Alkali metal atom; Magnesium oxide nanotubes; Density functional theory; Adsorption; M05;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Dua, P.; Chaudhari, K. N.; Lee, C. H.; Chaudhari, N. K.; Hong, S. W.; Yu, J. S.; Kim, S.; Lee, D. K. Bull. Korean Chem. Soc. 2011, 32, 2051-2057.   DOI
2 Xu, L.; Henkelman, G. Phys. Rev. B 2008, 77, 205404-205416.   DOI
3 Alfonso, D. R.; Jaffe, J. E.; Hess, A. C.; Gutowski, M. Surf. Sci. 2000, 466, 111-118.   DOI
4 Lian, J. C.; Finazzi, E.; Di Valentin, C.; Risse, T.; Gao, H. J.; Pacchioni, G.; Freund, H. J. Chem. Phys. Lett. 2008, 450, 308-311.   DOI
5 Finazzi, E.; Valentin, C. D.; Pacchioni, G.; Chiesa, M.; Giamello, E.; Gao, H. J.; Lian, J. C.; Risse, T.; Freund, H. J. Chem. Eur. J. 2008, 14, 4404-4409.   DOI
6 Bendiab, N.; Righi, A.; Anglaret, E.; Sauvajol, J. L.; Duclaux, L.; Beguin, F. Chem. Phys. Lett. 2001, 339, 305-310.   DOI
7 Kakkar, R.; Kapoor, P. N. J. Phys. Chem. B 2004, 108, 18140- 18148.   DOI
8 Wilson, M. J. Phys. Chem. B 1997, 101, 4917-4924.   DOI
9 Zhan, J.; Bando, Y.; Hu, J.; Golberg, D. Inorg. Chem. 2004, 43, 2462-2464.   DOI
10 Shein, I. R.; Enyashin, A. N.; Ivanovskii, A. L. Phys, Rev. B 2007, 75, 245404-245408.   DOI
11 Beheshtian, B.; Kamifiroozi, M.; Bagheri, Z.; Ahmadi, A. Phys. E 2011, 44, 546-549.   DOI
12 Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory Comput. 2006, 2, 364-382.   DOI
13 Ramraj, A.; Hillier, I. H.; Vincent, M. A.; Burton, N. A. Chem. Phys. Lett. 2010, 484, 295-298.   DOI
14 Stepanian, S. G.; Karachevtsev, M. V.; Glamazda, A. Y.; Karachevtsev, V. A.; Adamowicz, L. Chem. Phys. Lett. 2008, 459, 153-158.   DOI
15 Suzuki, S.; Bower, C.; Matanabe, Y.; Zhou, O. Appl. Phys. Lett. 1999, 76, 4007-4010.
16 Schmidt, M. et al. J. Comput. Chem. 1993, 14, 1347-1363.   DOI   ScienceOn
17 Miyake, T.; Saito, S. Phys. Rev. B 2005, 72, 073404-073409.   DOI   ScienceOn
18 Xu, R.; Gong, W.; Zhang, X.; Wang, L.; Hong, F. Chin. J. Chem. Phys. 2010, 23, 538-542.   DOI
19 Li, S. S. Semiconductor Physical Electronics, 2nd ed.; Springer: 2006; USA.
20 Louie, S. Top. Appl. Phys. 2001, 80, 113-146.   DOI
21 Kim, E.; Kim, S.; Kim, B. Bull. Korean Chem. Soc. 2011, 32, 3183-3186.   DOI
22 Bang, J. K.; Jung, S.; Kim, Y.; Kim, M. Bull. Korean Chem. Soc. 2011, 32, 2871-2872.   DOI