DOI QR코드

DOI QR Code

The Alkali Metal Interactions with MgO Nanotubes

  • Beheshtian, Javad (Department of Chemistry, Shahid Rajaee Teacher Training University) ;
  • Peyghan, Ali Ahmadi (Young Researchers Club, Islamic Azad University) ;
  • Bagheri, Zargham (Physics group, Science department, Islamic Azad University) ;
  • Kamfiroozi, M. (Department of Chemistry, Islamic Azad University)
  • Received : 2011.09.20
  • Accepted : 2012.03.13
  • Published : 2012.06.20

Abstract

Adsorption of alkali metals (Li, Na, and K) on the surface of magnesium oxide nanotubes (MgONTs) with different diameters was investigated using density functional theory. According to the obtained results, the most stable adsorption site was found to be atop the oxygen atom of the tube surface with adsorption energies in the range of -0.25 to -0.74 eV. HOMO-LUMO gap ($E_g$) of the tubes dramatically decreases upon the adsorption of the alkali metals, resulting in enhancement of their electrical conductivity enhancement. The order of $E_g$ decrement caused by the metal adsorption is as follows: K > Na > Li. The results suggest that the MgONTs were transformed from semi-insulator to semiconductor upon the alkali metal adsorption. Increasing the tube diameter, the HOMO/LUMO gap of the pristine tube is enhanced and adsorption energies of the alkali metals are decreased.

Keywords

References

  1. Kim, E.; Kim, S.; Kim, B. Bull. Korean Chem. Soc. 2011, 32, 3183-3186. https://doi.org/10.5012/bkcs.2011.32.8.3183
  2. Bang, J. K.; Jung, S.; Kim, Y.; Kim, M. Bull. Korean Chem. Soc. 2011, 32, 2871-2872. https://doi.org/10.5012/bkcs.2011.32.8.2871
  3. Dua, P.; Chaudhari, K. N.; Lee, C. H.; Chaudhari, N. K.; Hong, S. W.; Yu, J. S.; Kim, S.; Lee, D. K. Bull. Korean Chem. Soc. 2011, 32, 2051-2057. https://doi.org/10.5012/bkcs.2011.32.6.2051
  4. Xu, L.; Henkelman, G. Phys. Rev. B 2008, 77, 205404-205416. https://doi.org/10.1103/PhysRevB.77.205404
  5. Alfonso, D. R.; Jaffe, J. E.; Hess, A. C.; Gutowski, M. Surf. Sci. 2000, 466, 111-118. https://doi.org/10.1016/S0039-6028(00)00737-8
  6. Lian, J. C.; Finazzi, E.; Di Valentin, C.; Risse, T.; Gao, H. J.; Pacchioni, G.; Freund, H. J. Chem. Phys. Lett. 2008, 450, 308-311. https://doi.org/10.1016/j.cplett.2007.11.049
  7. Finazzi, E.; Valentin, C. D.; Pacchioni, G.; Chiesa, M.; Giamello, E.; Gao, H. J.; Lian, J. C.; Risse, T.; Freund, H. J. Chem. Eur. J. 2008, 14, 4404-4409. https://doi.org/10.1002/chem.200702012
  8. Bendiab, N.; Righi, A.; Anglaret, E.; Sauvajol, J. L.; Duclaux, L.; Beguin, F. Chem. Phys. Lett. 2001, 339, 305-310. https://doi.org/10.1016/S0009-2614(01)00351-7
  9. Suzuki, S.; Bower, C.; Matanabe, Y.; Zhou, O. Appl. Phys. Lett. 1999, 76, 4007-4010.
  10. Kakkar, R.; Kapoor, P. N. J. Phys. Chem. B 2004, 108, 18140- 18148. https://doi.org/10.1021/jp0470546
  11. Wilson, M. J. Phys. Chem. B 1997, 101, 4917-4924. https://doi.org/10.1021/jp970712k
  12. Zhan, J.; Bando, Y.; Hu, J.; Golberg, D. Inorg. Chem. 2004, 43, 2462-2464. https://doi.org/10.1021/ic0351489
  13. Shein, I. R.; Enyashin, A. N.; Ivanovskii, A. L. Phys, Rev. B 2007, 75, 245404-245408. https://doi.org/10.1103/PhysRevB.75.245404
  14. Beheshtian, B.; Kamifiroozi, M.; Bagheri, Z.; Ahmadi, A. Phys. E 2011, 44, 546-549. https://doi.org/10.1016/j.physe.2011.09.016
  15. Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory Comput. 2006, 2, 364-382. https://doi.org/10.1021/ct0502763
  16. Ramraj, A.; Hillier, I. H.; Vincent, M. A.; Burton, N. A. Chem. Phys. Lett. 2010, 484, 295-298. https://doi.org/10.1016/j.cplett.2009.11.068
  17. Stepanian, S. G.; Karachevtsev, M. V.; Glamazda, A. Y.; Karachevtsev, V. A.; Adamowicz, L. Chem. Phys. Lett. 2008, 459, 153-158. https://doi.org/10.1016/j.cplett.2008.05.035
  18. Schmidt, M. et al. J. Comput. Chem. 1993, 14, 1347-1363. https://doi.org/10.1002/jcc.540141112
  19. Xu, R.; Gong, W.; Zhang, X.; Wang, L.; Hong, F. Chin. J. Chem. Phys. 2010, 23, 538-542. https://doi.org/10.1088/1674-0068/23/05/538-542
  20. Li, S. S. Semiconductor Physical Electronics, 2nd ed.; Springer: 2006; USA.
  21. Louie, S. Top. Appl. Phys. 2001, 80, 113-146. https://doi.org/10.1007/3-540-39947-X_6
  22. Miyake, T.; Saito, S. Phys. Rev. B 2005, 72, 073404-073409. https://doi.org/10.1103/PhysRevB.72.073404

Cited by

  1. DFT study of ozone dissociation on BC3 graphene with Stone–Wales defects vol.20, pp.1, 2014, https://doi.org/10.1007/s00894-014-2071-5
  2. A theoretical study on the adsorption of neutral and zwitterionic glycine on an MgO nanotube vol.146, pp.10, 2015, https://doi.org/10.1007/s00706-015-1418-7
  3. Theoretical investigation of properties of boron nitride nanocages and nanotubes as high-performance anode materials for lithium-ion batteries vol.95, pp.6, 2017, https://doi.org/10.1139/cjc-2017-0070
  4. DFT studies of Hydrogen adsorption and dissociation on MgO nanotubes vol.15, pp.2, 2016, https://doi.org/10.3233/mgc-150189
  5. Adsorption of syn−propanethial S−oxide on the Zn12O12 cluster: insights from ab-initio modelling vol.42, pp.3, 2012, https://doi.org/10.1080/17415993.2021.1881097