• Title/Summary/Keyword: Surface Temperature Distribution

Search Result 1,610, Processing Time 0.028 seconds

Quantitative Approach of Soil Prediction using Environment Factors in Jeju Island (환경요인을 이용한 제주도 토양예측의 정량적 연구)

  • Moon, Kyung-Hwan;Seo, Hyeong-Ho;Sonn, Yeon-Kyu;Song, Kwan-Chul;Hyun, Hae-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.360-369
    • /
    • 2012
  • Parent material, climate, topography, biological factors, and time are considered five soil forming factors. This study was conducted to elucidate the effects of several environment factors on soil distribution using quantitative analysis method, called soil series estimation algorithm in the soils of Jeju Island. We selected environment factors including mean temperature, annual precipitation, surface geology, altitude, slope, aspect, altitude difference within 1 $km^2$ area, topographic wetness index, distance from the shore, distance from the mountain peak, and landuse for a quantitative analysis. We analyzed the ranges of environment factors for each soil series and calculated probabilities of possible-soil series for certain locations using estimation algorithm. The algorithm can predicted exact soil series on the soil map with correctness of 33% on $1^{st}$ ranking, 62% within $2^{nd}$ ranking, 74% within $5^{th}$ ranking after estimating using randomly extracted environment factors. In predicted soil map, soil sequences of Entisols-Alfisols-Andisols on northern area and Alfisols-Ultisols-Andisols on western area can be suggested along increasing altitude. More modeling studies will be needed for the genesis process of soils in Jeju Island.

Manufacturing Characteristics and Its Color Change of Chewing Gum coated Various Polyols (당알코올로 코팅한 껌의 제조특성과 색택변화에 관한 연구)

  • Lee, Su Han;Lee, Jong Rok;Kim, Jung Hoan
    • Culinary science and hospitality research
    • /
    • v.21 no.6
    • /
    • pp.303-311
    • /
    • 2015
  • This study was carried out to evaluate the possibility of polyols for coating material of chewing gum. Five polyols xylitol, maltitol, isomalt, erythritol, and sorbitol were compared the coating quality, coating and drying time, and color differences. Maltitol was evaluated to be the best quality for coating the gum, whereas erythritol and sorbitol were not considered for coating materials for gum. These results derived from irregular surface layer and low productivity due to increased coating time. According to changes in color of chewing gum, samples coated maltitol and xylitol and isomalt stored at high temperature. In addition, color difference of sample coated maltitol was calculated 2.88 stored at $80^{\circ}C$ for 1 day, but those of xylitol and maltitol were highly evaluated. Sample coated maltitol in polypropylene bag was stored and measured for 1 month. Changes in color of sample was slightly occurred at below $40^{\circ}C$ and the color difference was not more than 3 at $60^{\circ}C$. Chewing gum coated maltitol as coating material was expected more stable in the quality of color during distribution. Current study was performed to color changes during storage, further study will be proceeded about shelf-life of chewing gum coated polyols.

Ecology of Ginger Rhizome Rot Development Caused by Pythium myriotylum (Pythium myriotyrum에 의한 생강뿌리썩음병의 발생상태)

  • Kim, Choong-Hoe;Yang, Sung-Seok;Hahn, Ki-Don
    • Korean Journal Plant Pathology
    • /
    • v.13 no.3
    • /
    • pp.184-190
    • /
    • 1997
  • Lesion enlargement of ginger rhizome rot was most rapid at 35~40 C, but delayed greatly as temperature decreased. Time needed for a killing a ginger plant, 22~25 cm long, was about 5 days at 35~40 C, but was 15 days at 15 C in a growth chamber test. Higher RH above 90%, higher soil moisture level above 80% of maximum soil moisture capacity, and deeper planting below 4cm enhanced the lesion development on ginger stems and rhizomes. Pythium myriotylum existed in field soil as forms of hyphal portion, hyphal swelling body, or oospore- or zoospore-like bodies, and served as the origin of its colonization. Inocula of P. myriotylum was randomly distributed in soil surface around ginger plants, but its density was decreased as increasing soil depth with the highest density at 0~10 cm soil depth. Population density of P. myriotylum did not vary significantly between the rhizoplane and the rhizosphere soil of a ginger plant, but differed greatly between the disessed and healthy plants with several to several hundreds times higher population in the diseased plants. A positive curvilinear relationship was found between P. myriotylum density and ginger rhizome rot severity.

  • PDF

A Numerical Model for Analysis of Groundwater Flow with Heat Flow in Steady-State (열(熱)흐름을 동반(同伴)한 정상지하수(定常地下水)의 흐름해석(解析) 수치모형(數値模型))

  • Wang, Soo Kyun;Cho, Won Cheol;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.103-112
    • /
    • 1991
  • In this study, a numerical model was established and applied to simulate the steady-state groundwater and heat flow in an isotropic, heterogeneous, three dimensional aquifer system with uniform thermal properties and no change of state. This model was developed as an aid in screening large groundwater-flow systems as prospects for underground waste storage. Driving forces on the system are external hydrologic conditions of recharge from precipitation and fixed hydraulic head boundaries. Heat flux includes geothermal heat-flow, conduction to the land surface, advection from recharge, and advection to or from fixed-head boundaries. The model uses an iterative procedure that alternately solves the groundwater-flow and heat-flow equations, updating advective flux after solution of the groundwater-flow equation, and updating hydraulic conductivity after solution of the heat-flow equation. Dierect solution is used for each equation. Travel time is determined by particle tracking through the modeled space. Velocities within blocks are linear interpolations of velocities at block faces. Applying this model to the groundwater-flow system located in Jigyung-ri. Songla-myun, Youngil-gun. Kyungsangbuk-do, the groundwater-flow system including distribution of head, temperature and travel time and flow line, is analyzed.

  • PDF

Drilling Gas Hydrate at Hydrate Ridge, ODP Leg 204

  • Lee Young-Joo;Ryu Byong-Jae;Kim Ji-Hoon;Lee Sang-Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.663-666
    • /
    • 2005
  • Gas hydrates are ice-like compounds that form at the low temperature and high pressure conditions common in shallow marine sediments at water depths greater than 300-500 m when concentrations of methane and other hydrocarbon gases exceed saturation. Estimates of the total mass of methane carbon that resides in this reservoir vary widely. While there is general agreement that gas hydrate is a significant component of the global near-surface carbon budget, there is considerable controversy about whether it has the potential to be a major source of fossil fuel in the future and whether periods of global climate change in the past can be attributed to destabilization of this reservoir. Also essentially unknown is the interaction between gas hydrate and the subsurface biosphere. ODP Leg 204 was designed to address these questions by determining the distribution, amount and rate of formation of gas hydrate within an accretionary ridge and adjacent basin and the sources of gas for forming hydrate. Additional objectives included identification of geologic proxies for past gas hydrate occurrence and calibration of remote sensing techniques to quantify the in situ amount of gas hydrate that can be used to improve estimates where no boreholes exist. Leg 204 also provided an opportunity to test several new techniques for sampling, preserving and measuring gas hydrates. During ODP Leg 204, nine sites were drilled and cored on southern Hydrate Ridge, a topographic high in the accretionary complex of the Cascadia subduction zone, located approximately 80km west of Newport, Oregon. Previous studies of southern Hydrate Ridge had documented the presence of seafloor gas vents, outcrops of massive gas hydrate, and a pinnacle' of authigenic carbonate near the summit. Deep-towed sidescan data show an approximately $300\times500m$ area of relatively high acoustic backscatter that indicates the extent of seafloor venting. Elsewhere on southern Hydrate Ridge, the seafloor is covered with low reflectivity sediment, but the presence of a regional bottom-simulating seismic reflection (BSR) suggests that gas hydrate is widespread. The sites that were drilled and cored during ODP Leg 204 can be grouped into three end-member environments basedon the seismic data. Sites 1244 through 1247 characterize the flanks of southern Hydrate Ridge. Sites 1248-1250 characterize the summit in the region of active seafloor venting. Sites 1251 and 1252 characterize the slope basin east of Hydrate Ridge, which is a region of rapid sedimentation, in contrast to the erosional environment of Hydrate Ridge. Site 1252 was located on the flank of a secondary anticline and is the only site where no BSR is observed.

  • PDF

Evidence for Hydrothermal Plume in Manus Basin, SW Pacific: Distribution of Transparency and Hydrogen Sulfide (남서태평양 마누스분지 해역의 열수 plume 증거: 투명도 및 황화수소 분포)

  • Lee, Kyeong-Yong;Park, Yong-Chul;Son, Seung-Kyu
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.363-373
    • /
    • 2000
  • To understand and investigate chemical characteristics of thermal environment in the southwestern Paciflc, we have measured hydrological and chemical parameters such as temperature, salinity, transparency, pH, nutrients and hydrogen sulfide (H$_2$S). Samples were collected with CTD-casting at 12 station, in Manus Basin including PACMANUS, DESMOS and Susu Knolls, Hydrothermal systems consist of circulation zones where seawater interacts with rock, thereby changing chemical and physical characteristics of both the seawater and the rock. The altered seawater, called hydrothermal fluid, is injected back into the ocean from the hydrothermal vent fields and forms hydrothermal plumes. Consequently, we detected hydrothermal plume with transparency and sulfide anomalies at PACMANUS and Susu Knolls. Sulfide, as geochemical tracer of hydrothermal plume, ranged 0-3.31 ${\mu}$M, and averaged 0.63 ${\mu}$M in the study area. The height, flux and activity of the plume are affected by circulations in the deep water and the spread of plume follows along the isopycnal surface. Therefore the observed H$_2$S anomaly can provide important clue for the source location and it appears that the targestsource in the PACMANUS is aligned in the north-south direction.

  • PDF

Seasonal Variation of Picoplankton Community in Lake Juam (주암호에서 미세조류의 계절적 군집 변화)

  • Cheong, Cheong-Jo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.271-277
    • /
    • 2010
  • The purpose of this study is to investigate the seasonal variation of picoplankton community in Lake Juam depending on the change of physico-chemical factors such as rainfall, water depth, DO and pH. The concentration of chlorophyll-a was most high as 18.03 mg/$m^3$ in July when the rainfall and water temperature were highest. The concentration was gradually decreased in October, April and that of January was decreased most low as 1.86 mg/$m^3$. The highest concentration of the Chl-a was shown at 2 and 5 m of water depth than surface, and the concentration was gradually decreased when the water depth becomes deep. Overall, microplankton was the highest rate as 33.9~54.2%, nanoplankton was 24.3~30.5% and picoplankton was 21.6~41.2%. Picoplankton was included as considerable concentration in the water of Juam lake. Therefore it is necessary to remove thoroughly the picoplankton in the water treatment processes such coagulation·sedimentation and sand filtration. The protoplasm released from destruction of picoplankton by chlorine has high possibility to cause regrowth of bacteria and pathogenic microorganism in the distribution system by playing the role of the assimilable organic carbon.

Investigation of Aircraft Plume IR Signature for Various Nozzle Configurations and Atmospheric Conditions (노즐형상 및 대기조건에 따른 항공기의 플룸 IR 신호 연구)

  • Kang, Dong-Woo;Kim, In-Deok;Myong, Rho-Shin;Kim, Won-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.10-19
    • /
    • 2014
  • Nozzle configurations and atmospheric conditions play a significant role in the infrared signature level of aircraft propulsion system. Various convergent nozzles of an unmanned aircraft under different atmospheric conditions are considered. An analysis of thermal flow field and nozzle surface temperature distribution is conducted using a compressible CFD code. It is shown that the IR level in rear direction is considerably reduced in deformed nozzles, whereas the IR level in adjacent azimuth angles is increased in aspect ratios around 6 due to the plume spreading effect caused by high aspect ratio of nozzles. In addition, an analysis of atmospheric transmissivity for various seasons and observation distance is conducted using the LOWTRAN 7 code and subsequently plume IR signature is calculated by considering atmospheric effects. It is shown that the IR signature is reduced significantly in summer season and near the band of carbon dioxide in case of relatively close distance.

Tubular Type Direct Methanol Fuel Cell for in situ NMR Diagnosis (In Situ NMR 진단용 원통형 직접 메탄올 연료전지)

  • Joh, Han-Ik;Um, Myung-Sup;Han, Kee-Sung;Han, Oc-Hee;Ha, Heung-Yong;Kim, Soo-Kil
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.329-334
    • /
    • 2009
  • This study is to develop a fuel cell system applicable to an in situ NMR (Nuclear magnetic resonance) diagnosis. The in situ NMR can be used in real time monitoring of various reactions occurring in the fuel cell, such as oxidation of fuel, reduction of oxygen, transport phenomena, and component degradation. The fuel cell for this purpose is, however, to be operated in a specifically designed tubular shape toroid cavity detector (TCD), which constrains the fuel cell to have a tubular shape. This may cause difficulties in effective mass transport of reactants/products and uniform distribution of assembly pressure. Therefore, a new flow field designed in a particular way is necessary to enhance the mass transport in the tubular fuel cell. In this study, a tubular-shaped close-type flow field made of non-magnetic material is developed. With this flow field, oxygen is effectively delivered to the cathode surface and the produced water is readily removed from the membrane-electrode assembly to prevent flooding. The resulting DMFC (direct methanol fuel cell) outperforms the open-type flow field and exhibits $36\;mW/cm^2$ even at room temperature.

The Effects of Teaching Methods on Conceptual Change of Atmospheric Pressure in Middle School Students (수업방안이 중학생들의 대기압 개념 변화에 미치는 영향)

  • Kim, Jong-Hee;Bae, Ju-Hyeon;Lee, Yong-Seob;Kim, Sang-Dal
    • Journal of the Korean earth science society
    • /
    • v.25 no.4
    • /
    • pp.214-221
    • /
    • 2004
  • The purpose of this study is to inquire into the effects of teaching methods in the class on the conceptual change of atmospheric pressure for middle school students. After analyzing the concept of atmospheric pressure in the middle school science textbooks on the present 7th Curriculum, classes were performed adopting classified Method A and Method 3. For Method A, the textbook is used to explain the concept in the view of weight. For Method B, the textbook is used to approach the concept in the views of molecular movement as well as of weight. This study consists of four classes in the third grade students of middle school in Busan, where they were divided into the Method A group and the Method B group. These study was carried out with pre-post on each of these classes on the learning achievement and on the conceptual change of atmospheric pressure. The results of this study were as follows: First, the effect on the learning achievement was displayed the average score of the Method B was showing a meaningful difference comparing to the Method A. Second, the effect on the conceptual change measured by verifying the score for the difference among the averages for each sub-scale three out of four conceptual factors,'the direction of atmospheric influence and the reason','the principle of atmospheric action' and 'the atmospheric changes by the temperature rise on the surface of the earth and the reason', showed meaningful improvement. But, the one left factor,'the distribution of atmospheric pressure by altitudes and the reason', displayed no meaningful difference. Third, The concept of atmospheric pressure is better defined as the pressure created by the movement of air particles, in the view of kinetic theory of gas, rather than explained by the notion of the weight of air.