• Title/Summary/Keyword: Surface Stability

Search Result 3,585, Processing Time 0.033 seconds

The Study on Emulsifying and Foaming Properties of Buckwheat Protein Isolate (분리 메밀 단백질의 유화 및 기포특성에 관한 연구)

  • 손경희;최희선
    • Korean journal of food and cookery science
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 1993
  • Buckwheat protein isolate was tested for the effects of pH, addition of sodium chloride and heat treatment on solubility, emulsion capacities, emulsion stability, surface hydrophobicity, foam capacities and foam stability. The solubility of buckwheat protein isolate was affected by pH and showed the lowest value at pH 4.5, the isoelectric point of buckwheat protein isolate. The solubility significantly as the pH value reached closer to either ends of the pH, i.e., pH 1.0 and 11.0. The effects of NaCl concentration on solubility were as follows; at pH 2.0, the solubility significantly decreased when NaCl was added; at pH 4.5, it increased above 0.6 M; at pH 7.0 it increased; and at pH 9.0 it decreased. The solubility increased above $80^{\circ}C$, at all pH ranges. The emulsion capacity was the lowest at pH 4.5. It significantly increased as the pH approached higher acidic or alkalic regions. At pH 2.0, when NaCl was added, the emulsion capacity decreased, but it increased at pH 4.5 and showed the maximum value at pH 7.0 and 9.0 with 0.6 M and 0.8 M NaCl concentrations. Upon heating, the emulsion capacity decreased at acidic pH's but was maximised at pH 7.0 and 9.0 on $60^{\circ}C$ heat treatment. The emulsion stability was the lowest at pH 4.5 but increased with heat treatment. At acidic pH, the emulsion stability increased with the increase in NaCl concentration but decreased at pH 7.0 and 9.0. Generally, at other pH ranges, the emulsion stability was decreased with increased heating temperature. The surface hydrophobicity showed the highest value at pH 2.0 and the lowest value at pH 11.0. As NaCl concentrationed, the surface hydrophobicity decreased at acidic pH. The NaCl concentration had no significant effects on surface hydrophobicity at pH 7.0, 9.0 except for the highest value observed at 0.8 M and 0.4 M. At all pH ranges, the surface hydrophobicity was increased, when the temperature increased. The foam capacity decreased, with increased in pH value. At acidic pH, the foam capacity was decreased with the increased in NaCl concentration. The highest value was observed upon adding 0.2 M or 0.4 M NaCl at pH 7.0 and 9.0. Heat treatments of $60^{\circ}C$ and $40^{\circ}C$ showed the highest foam capacity values at pH 2.0 and 4.5, respectively. At pH 7.0 and 9.0, the foam capacity decreased with the increased in temperature. The foam stability was not significantly related to different pH values. The addition of 0.4 M NaCl at pH 2.0, 7.0 and 9.0 showed the highest stability and the addition of 1.0 M at pH 4.5 showed the lowest. The higher the heating temperature, the lower the foam stability at pH 2.0 and 9.0. However, the foam stability increased at pH 4.5 and 7.0 before reaching $80^{\circ}C$.

  • PDF

Slope Stability Analysis for Compound slope (복합사면의 사면안정해석에 관한 연구)

  • Shin, Eun-Chul;Kim, Jin-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1279-1285
    • /
    • 2010
  • Our country has a tendency to build many structures by cutting mountainous areas due to geographical features. Among these construction done in our country, road construction take the first spot in rank. As the construction is done, fractured inclining plane is created inevitability because of the natural properties of mountainous areas. The stability of the fractured inclining planes and slope formed in the opening, which are developed at the time of construction, need to be evaluated. Also, reinforcement plans for these matters are necessary. This paper is to go through an examination on the fractured inclining surface that is developed at the time of construction, especially the composite inclining plane that consists of soil and rocks. Furthermore, evaluating the stability by performing an analysis on stereographic projection and limit equilibrium, based on the examination results. using the stability evaluations, applications were explored for reinforcement methods of construction that fits the geological characters of this inclining surface.

  • PDF

Thermal Stability and Surface Hardnes of UV-curable Epoxy Acrylate Coatings for Wooden Flooring (마루바닥재용 자외선 경화형 에폭시 아크릴레이트 도료의 열안정성과 표면경도)

  • Hwang, Hyeon-Deuk;Choi, Jae-Hoon;Moon, Je-Ik;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.121-129
    • /
    • 2008
  • Environmental friendly UV-curable coatings, having excellent hardness, gloss, mar and chemical resistance, are commonly used for the wooden flooring coatings. Especially epoxy acrylate oligomers are chosen for the wooden flooring coatings, due to their thermal stability and fast curing. In this study, we investigated the effect of the acrylate functionality on the thermal stability and surface hardness. The thermal degradations of monomers, oligomer, photoinitiator and formulated coatings with different acrylate functionality were measured using a thermogravimetric analysis (TGA). And the surface hardness was also measured with a pendulum hardness tester to compare relationship between the thermal stability and the physical property. The cured coatings became thermally stable by crosslinking during UV-curing. Both the thermal stability and surface hardness of cured coatings were improved with increasing acrylate functionality.

Effect of Solvent on the Dispersion Stability of CaCO3 Pigment (CaCO3 안료의 분산 안정성에 대한 용제의 영향)

  • Lee, Gun Dae;Ryu, Young Cheal;Suh, Cha Soo;Hong, Seong Soo;Ahn, Byung Hyun;Moon, Myung Jun
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.252-261
    • /
    • 1997
  • The effect of solvent on the dispersion stability of $CaCO_3$ pigment in various solvents and resin solutions has been studied using Dynometer. Dispersion stability can be estimated in a relatively short time by means of Dynometer and the solubility parameter, ${\delta}$, of $CaCO_3$ determined from dispersion stability was 11.62(${\delta}_d=8.04$, ${\delta}_p=5.05$, ${\delta}_h=6.70$). The solvent showing weaker interaction with pigment increased the adsorption of resin on to the pigment, resulting in higher dispersion stability in resin solution. It was found that the rheological properties and dispersion stability of pigmented resin solution were depending strongly on the solvent added in small amount in the formulation.

  • PDF

Establishment of Tailing Disposal Scenario in Open-Pit and Surface Pillar Stability Analysis (노천채굴적 내 광미 적치 시나리오 구축 및 천반 수평필러 안정성 분석)

  • Il-Seok Kang;Jae-Joon Song;Thomas Pabst
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.54-70
    • /
    • 2024
  • Utilization of completed open-pit for mining waste disposal is an alternative method of tailing storage facility (TSF), which can minimize the area and cost required for the installation of TSF. However, long-term tailing disposal into open-pit has a potential risk of reducing mechanical stability of surrounding rock mass by acting as an additional load. In this research, a realistic open-pit tailing disposal scenario of 60,400 hours was established based on the case of Marymia gold mine, Australia. Mechanical stability of surface pillar between open-pit and underground stope was analyzed numerically by using Sigma/W, under different stope geometry and rock mass conditions. Simulation results showed that long-term tailing disposal into open-pit can significantly increase the failure probability of surface piller. This result suggests that mechanical stability of mine geometry should be conducted beforehand of open-pit tailing disposal.

Studies on the Surface Properties of PMMA after Accelerated Weathering

  • Kwon, Young Bum;Ha, Jin Uk;Hwang, Ye Jin;Oh, Jeong Seok
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.350-354
    • /
    • 2016
  • The surface properties of poly(methyl methacrylate) (PMMA) were investigated after accelerated weathering. Glossinesses, contact angles, surface free energies, thermal stability, and mechanical properties were investigated. The glossiness of the weathered PMMA was decreased with increasing exposure time. Contact angles and surface free energies were not overtly changed because the amount of oxygen on the surface was remained. PMMA was compounded with anti-block and antistatic agents using a co-rotating twin screw extruder to improve the durability. The PMMA composites showed better glossinesses after accelerated weathering while maintaining the contact angles, surface energy, thermal stability, and mechanical properties without significant changes.

Surface-attached Solid Dispersion

  • Park, Young-Joon;Oh, Dong-Hoon;Yan, Yi-Dong;Seo, Yoon-Gee;Lee, Sung-Neug;Choi, Han-Gon;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.97-102
    • /
    • 2010
  • A novel surface-attached solid dispersion is designed to improve the solubility and oral bioavailability of poorly water-soluble drugs without crystalline change. Accordingly, it draws increasing interest because of excellent stability and no pollution for accomplishing enhanced solubility and bioavailability, which have recently been highlighted in connection with a number of higher value-added poorly water-soluble drugs. In addition, excellent stability can be attained when the poorly water-soluble drugs are not dissolved but dispersed in water and provide no crystallinity change. This solid dispersion is given by means of attaching the dissolved carriers such as hydrophilic polymer and surfactant to the surface of dispersed drug particles followed by changing the hydrophobic drug to hydrophilic form. The aim of the present review is to outline the preparation, physicochemical property and bioavailability of novel surface-attached solid dispersion with improved solubility and bioavailability of poorly water-soluble drugs without crystalline change.

Trunk Muscle Activation during Bridge Exercise with Various Shoulder Supporting Surfaces

  • Son, Ho-hee
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.3
    • /
    • pp.81-86
    • /
    • 2015
  • PURPOSE: Bridge exercises are broadly used to develop trunk co-activation patterns that promote spine stability. This study was to analyze the trunk muscle activity during bridge exercise with various shoulder support surface(stable, sling, Swiss ball). METHODS: The subjects were 20 healthy subjects in their twenties. Subjects were performed bridge exercise on 4 different shoulder support surfaces using stable and labile instruments. 1) Bridge exercise on a stable surface. 2) Bridge exercise with their shoulder on a stable bench. 3) Bridge exercise with their shoulder on a sling. 4) Bridge exercise with their shoulder on a Swiss ball. Rectus abdominis, erector spinae, internal oblique, external oblique muscle activities were measured using electromyography. RESULTS: There were significant differences in RA, EO muscles between performing each of the 4 exercises(p<.05). RA and EO was recorded the highest activity during the bridge exercise with their shoulder on a sling. The lowest activity was recorded during conventional supine bridge on a stable surface. There were no differences found for the EO/RA and IO/RA ratio. The EO/RA and IO/RA ratio was the highest in the bridge exercise with their shoulders resting on a stable bench. CONCLUSION: These findings suggest that change of shoulder support surface during bridge exercise may be useful for enhancing the trunk stability.

Surface and small scale effects on the dynamic buckling of carbon nanotubes with smart layers assuming structural damping

  • Farokhian, Ahmad;Salmani-Tehrani, Mehdi
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.229-251
    • /
    • 2020
  • In this paper, dynamic buckling of a smart sandwich nanotube is studied. The nanostructure is composed of a carbon-nanotube with inner and outer surfaces coated with ZnO piezoelectric layers, which play the role of sensor and actuator. Nanotube is under magnetic field and ZnO layers are under electric field. The nanostructure is located in a viscoelastic environment, which is assumed to obey Visco-Pasternak model. Non-local piezo-elasticity theory is used to consider the small-scale effect, and Kelvin model is used to describe the structural damping effects. Surface stresses are taken into account based on Gurtin-Murdoch theory. Hamilton principle in conjunction with zigzag shear-deformation theory is used to obtain the governing equations. The governing equations are then solved using the differential quadrature method, to determine dynamic stability region of the nanostructure. To validate the analysis, the results for simpler case studies are compared with others reported in the literature. Then, the effect of various parameters such as small-scale, surface stresses, Visco-Pasternak environment and electric and magnetic fields on the dynamic stability region is investigated. The results show that considering the surface stresses leads to an increase in the excitation frequency and the dynamic stability region happens at higher frequencies.

Behavior of Weld Pool Shape and Weld Surface Deformation as a Function of Spot-GTA Welding Position for 304 Stainless Steel (Spot-GTA 용접자세에 따른 304 스테인리스강 용융지 표면 및 용접부 형상 거동)

  • Kang, Nam-Hyun;Park, Yeong-Do;Cho, Kyung-Mox;Singh, Jogender;Kulkarni, Anil
    • Journal of Welding and Joining
    • /
    • v.26 no.2
    • /
    • pp.62-68
    • /
    • 2008
  • Effects of gravitational orientation on gas tungsten arc welding (GTAW) for 304 stainless steel were studied to determine the critical factors for weld pool formation, such as weld surface deformation and weld pool shape. This study was accomplished through an analytical study of weld pool stability as a function of primary welding parameters (arc current and arc holding time), material properties (surface tension and density), and melting efficiency (cross-sectional area). The stability of weld pool shape and weld surface deformation was confirmed experimentally by changing the welding position. The arc current and translational velocity were the major factors in determining the weld pool stability as a function of the gravitational orientation. A 200A spot GTAW showed a significant variation of the weld pool formation as the arc held longer than 3 seconds, however the weld pool shape and surface morphology for a 165A spot GTAW were 'stable', i.e., constant regardless of the gravitational orientation. The cross-sectional area of the weld (CSA) was one of the critical factors in determining the weld pool stability. The measured CSA ($13.5mm^2$) for the 200A spot GTAW showed a good agreement with the calculated CSA ($14.9mm^2$).