DOI QR코드

DOI QR Code

Establishment of Tailing Disposal Scenario in Open-Pit and Surface Pillar Stability Analysis

노천채굴적 내 광미 적치 시나리오 구축 및 천반 수평필러 안정성 분석

  • Il-Seok Kang (Department of Energy Systems Engineering, Seoul National University) ;
  • Jae-Joon Song (Department of Energy Systems Engineering, Seoul National University) ;
  • Thomas Pabst (Department of Civil, Geological and Mining Engineering, Polytechnique Montreal)
  • 강일석 (서울대학교 에너지시스템공학부) ;
  • 송재준 (서울대학교 에너지시스템공학부) ;
  • Received : 2023.12.08
  • Accepted : 2023.12.27
  • Published : 2024.02.29

Abstract

Utilization of completed open-pit for mining waste disposal is an alternative method of tailing storage facility (TSF), which can minimize the area and cost required for the installation of TSF. However, long-term tailing disposal into open-pit has a potential risk of reducing mechanical stability of surrounding rock mass by acting as an additional load. In this research, a realistic open-pit tailing disposal scenario of 60,400 hours was established based on the case of Marymia gold mine, Australia. Mechanical stability of surface pillar between open-pit and underground stope was analyzed numerically by using Sigma/W, under different stope geometry and rock mass conditions. Simulation results showed that long-term tailing disposal into open-pit can significantly increase the failure probability of surface piller. This result suggests that mechanical stability of mine geometry should be conducted beforehand of open-pit tailing disposal.

생산이 완료된 노천광산 채굴적을 광미(광물찌꺼기) 적치 장소로 활용하는 방안은 기존 광미 적치 시설(TSF, Tailing storage facility)의 설치 공간 및 운영비용 문제 해결을 위한 대안으로 제시된다. 하지만 장기간에 걸쳐 적치된 광미는 주변 암반에 추가적인 하중으로 작용하여 광산의 역학적 안정성을 저해할 위험성이 존재한다. 본 연구에서는 호주 Marymia 광산의 사례를 참고하여 약 60,400 시간에 걸친 광미 적치 시나리오를 구축하였으며, 다양한 지하 채광장 형태 및 암반 조건에 따른 천반 수평필러의 역학적 안정성을 Sigma/W 해석 소프트웨어를 활용하여 분석하였다. 분석 결과, 광미 적치가 장기간 지속됨에 따라 천반 수평필러의 파괴 가능성이 유의미하게 증가함을 확인하였다. 해당 결과는 노천채굴적 내 광미 적치 시 광산 구조에 대한 역학적 안정성 고려가 필수적임을 시사한다.

Keywords

Acknowledgement

본 연구는 2023년도 정부(산업통상자원부)의 재원으로 해외자원개발협회의 지원(2021060003, 스마트 마이닝 전문 인력 양성)과 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No. 2022R1F1A1076409)을 받아 수행된 연구입니다. 또한 본 연구는 폴리테크니크 몬트리올- 캐나다 광업환경연구소(RIME)의 국제 인턴쉽 프로그램(International Internship Program)의 지원을 받아 수행되었습니다.

References

  1. Bussiere, B. and Guittonny, M., 2021, Hard Rock Mine Reclamation: From Prediction to Management of Acid Mine Drainage, CRC Press.
  2. Carter, T.G. and Miller, R.I., 1995, Crown-pillar risk assessment - planning aid for cost-effective mine closure remediation, Transactions of the Institution of Mining and Metallurgy - Section A - Mining Industry, 104, A41-A57.
  3. Carter, T.G., 2014, Guidelines for use of the Scaled Span Method for Surface Crown Pillar Stability Assessment, Ontario Ministry of Northern Development and Mines, Ontario, 1-34.
  4. Chen, T. and Mitri, H.S., 2021, Strategies for surface crown pillar design using numerical modelling - A case study, International Journal of Rock Mechanics and Mining Sciences, 138, 104599.
  5. Dintwe, T.K., Sasaoka, T., Shimada, H., Hamanaka, A., Moses, D. N., Peng, M., Fanfei, M., Liu, S., Ssebadduka, R., and Onyango, J.A., 2022, Numerical Simulation of Crown Pillar Behaviour in Transition from Open Pit to Underground Mining, Geotechnical and Geological Engineering, 40(4), 2213-2229. https://doi.org/10.1007/s10706-021-02022-4
  6. Fahey, M., Helinski, M., and Fourie, A., 2009, Some aspects of the mechanics of arching in backfilled stopes, Canadian Geotechnical Journal, 46(11), 1322-1336.
  7. Fama, M.E.D., Trueman, R., and Craig, M.S., 1995, Two- and three-dimensional elasto-plastic analysis for coal pillar design and its application to highwall mining, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(3), 215-225. https://doi.org/10.1016/0148-9062(94)00045-5
  8. GHD Pty Ltd., 2016, McArthur River Mine Overburden Management Project: Appendix AC - Tailings Diposition into Open Pit Consolidation Modelling, Hobart, Australia.
  9. Hemant, K., Debasis, D., and Chakravarty, D., 2017, Design of crown pillar thickness using finite element method and multivariate regression analysis, International Journal of Mining Science and Technology, 27(6), 955-964. https://doi.org/10.1016/j.ijmst.2017.06.017
  10. Hoek, E. and Brown, E.T., 2019, The Hoek-Brown failure criterion and GSI - 2018 edition, Journal of Rock Mechanics and Geotechnical Engineering, 11(3), 445-463. https://doi.org/10.1016/j.jrmge.2018.08.001
  11. Jahanbakhshzadeh, A., Aubertin, M. and Li, L., 2018, Analysis of the Stress Distribution in Inclined Backfilled Stopes Using Closed-form Solutions and Numerical Simulations, Geotechnical and Geological Engineering, 36(2), 1011-1036.
  12. Karakus, M. and Fowell, R.J., 2003, Effects of different tunnel face advance excavation on the settlement by FEM, Tunnel and Underground Space Technology, 18(5), 513-523. https://doi.org/10.1016/S0886-7798(03)00068-3
  13. Kelsall, P.C., Case, J.B., and Chabannes, C.R., 1984, Evaluation of Excavation-induced Changes in Rock Permeability, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 21(3), 123-135. https://doi.org/10.1016/0148-9062(84)91530-4
  14. McDonald, L. and Lane, J.C., 2010, Consolidation of in-pit tailings, Mine Waste 2010: Proceedings of the First International Seminar on the Reduction of Risk in the Management of Tailings and Mine Waste, Perth, Australia, 49-62.
  15. MEND, 2015, In-Pit Disposal of Reactive Mine Wastes: Approaches, Update and Case Study Results, Arcadis, Ontario, Canada.
  16. Pandit, B., Tiwari, G., Latha, G.M., and Babu, G.L.S., 2018, Stability Analysis of a Large Gold Mine Open-Pit Slope Using Advanced Probabilistic Method, Rock Mechanics and Rock Engineering, 51(7), 2153-2174. https://doi.org/10.1007/s00603-018-1465-6
  17. Perras, M.A. and Diederichs, M.S., 2016, Predicting excavation damage zone depths in brittle rocks, Journal of Rock Mechanics and Geotechnical Engineering, 8(1), 60-74. https://doi.org/10.1016/j.jrmge.2015.11.004
  18. Puhalovich, A.A. and Coghill, M., 2011, Management of mine wastes using pit void backfilling methods - current issues and approaches, Mine Pit Lakes: Closure and Management, ACG, Crawley, Australia, 3-14.
  19. Tayebi-Khorami, M., Edraki, M., Corder, G., and Golev, A., 2019, Re-thinking mining waste through an integrative approach led by circular economy aspirations, Minerals, 9(5), 286.
  20. Wei, Y., Jiaxin, L., Zonghong, L., Wei, W., and Xiaoyun, S., 2020, A strength reduction method based on the Generalized Hoek-Brown (GHB) criterion for rock slope stability analysis, Computers and Geotechnics, 117, 103240.
  21. Wu, F., Liu, J., Liu, T., Zhuang, H., and Yan, C., 2009, A method for assessment of excavation damaged zone (EDZ) of a rock mass and its application to a dam foundation case, Engineering Geology, 104(3-4), 254-262. https://doi.org/10.1016/j.enggeo.2008.11.005
  22. Xu, S., Suorineni, F.T., An, L., Li, Y.H., and Jin, C.Y., 2019, Use of an artificial crown pillar in transition from open pit to underground mining, International Journal of Rock Mechanics and Mining Sciences, 117, 118-131. https://doi.org/10.1016/j.ijrmms.2019.03.028
  23. Yang, J., Dai, J., Yao, C., Jiang, S., Zhou, C. and Jiang, Q., 2020, Estimation of rock mass properties in excavation damage zones of rock slopes based on the Hoek-Brown criterion and acoustic testing. International Journal of Rock Mechanics and Mining Sciences, 126, 104192.
  24. Yilmaz, E., 2011, Advances in reducing large volumes of environmentally harmful mine waste rocks and tailings, Gospodarka Surowcami Mineralnymi, 27, 89-112.
  25. Zhang, Y., Wang, F., Hudson-Edwards, K.A., Blake, R., Zhao, F., Yuan, Z., and Gao, W., 2020, Characterization of Mining-Related Aromatic Contaminants in Active and Abandoned Metal(loid) Tailings Ponds, Environmental Science and Technology, 54(23), 15097-15107. https://doi.org/10.1021/acs.est.0c03368
  26. Zheng, J. and Li, L., 2020, Experimental study of the "short-term" pressures of uncemented paste backfill with different solid contents for barricade design, Journal of Cleaner Production, 275, 123068.
  27. Zheng, J., Li, L. and Li, Y.C., 2020, A solution to estimate the total and effective stresses in backfilled stopes with an impervious base during the filling operation of cohesionless backfill, International Journal for Numerical and Analytical Methods in Geomechanics, 44(11), 1570-1586. https://doi.org/10.1002/nag.3079