• 제목/요약/키워드: Surface Stability

검색결과 3,585건 처리시간 0.036초

표면 SH파의 음압 통과율과 에코 안정성에 관한 실험적 검증 (Experimental Verification on the Stability and Sound Pressure Transmission Coefficient of Surface SH-Wave)

  • 이명호
    • 한국공작기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.23-30
    • /
    • 2003
  • It is very important to detect and evaluate the surface or subsurface flaws because of their influences on mechanical properties of materials. Rayleigh wave and creeping wave are commonly used for the detection of surface and subsurface flaws. These techniques, however, have following problems. Each amplitudes are remarkably affected by the surface condition and evaluation of echo pattern is usually difficult because shear wave mode propagate in the material at the same time. On the other hand, surface SH-wave which is horizontally polarized shear wave traveling along near surface layer is an attractive technique for the surface or subsurface material characterization and this technique is useful to solve the problems mentioned above. In this paper, The stability and transmission coefficient of SH waves through a viscous fluid layer is theoretically studied and simulated. Its results agreed well with the theoretical expectation for the experimental verification. These experimental results show that viscosity of couplants, thickness of couplant and surface roughness are closely related to transfer efficiency in surface SH angle beam method.

Pseudo-static stability analysis of wedges based on the nonlinear Barton-Bandis failure criterion

  • Zhao, Lianheng;Jiao, Kangfu;Zuo, Shi;Yu, Chenghao;Tang, Gaopeng
    • Geomechanics and Engineering
    • /
    • 제20권4호
    • /
    • pp.287-297
    • /
    • 2020
  • This paper investigates the stability of a three-dimensional (3D) wedge under the pseudo-static action of an earthquake based on the nonlinear Barton-Bandis (B-B) failure criterion. The influences of the mechanical parameters of the discontinuity surface, the geometric parameters of the wedge and the pseudo-static parameters of the earthquake on the stability of the wedge are analyzed, as well as the sensitivity of these parameters. Moreover, a stereographic projection is used to evaluate the influence of pseudo-static direction on instability mode. The parametric analyses show that the stability coefficient and the instability mode of the wedge depend on the mechanical parameter of the rock mass, the geometric form of the wedge and the pseudo-static state of the earthquake. The friction angle of the rock φb, the roughness coefficient of the structure surface JRC and the two angles related to strikes of the joints θ1 and θ2 are sensitive to stability. Furthermore, the sensitivity of wedge height h, the compressive strength of the rock at the fracture surface JCS and the slope angle α to the stability are insignificant.

수종 약물이 리포솜 지질막의 안정성에 미치는 영향 (Effects of Drugs on the Stability of Phospholipid Liposomal Membranes)

  • 김민;한석규;김종국
    • 약학회지
    • /
    • 제38권6호
    • /
    • pp.637-645
    • /
    • 1994
  • The effect of various drugs on the stability of the liposomal membrane of phosphatidylcholine and cholesterol was studied, employing the fluorescence self-quenching method. Calcein was entrapped into the phospholipid small unilamellar vesicles and the leakage of the fluorescence probe was monitored on adding the drug to the system. The results of the experiments showed that phenothiazine derivatives, some potent local anesthetics and surface active agents were very effective in inducing the leakage of calcein from the liposome. The leakage-inducing activity of these drug substances has been ascribed to their surface activity and the perturbation of the liposomal membrane by these substances. On the other hand drug substance with low surface activity or without amphiphilic moieties did not show any effect or only small effect on the leakage of calcein from the liposomes. The effect of lipid concentration on the stability of the liposomes was also investigated to show that the higher concentrations of lipid more drug was required to induce the leakage. The effect of surface charges of vesicles was also studied, and the results showed that the charge on the liposomes enhanced the stability of the liposomes against the leakage-inducing activity of these drug substances.

  • PDF

비대칭성이 고려된 나선형 시험 모델을 통한 손상 수상함의 직진 안정성 추정 (Estimation of Straight Line Stability of a Damaged Surface Combatant through Spiral Maneuver Test Model Considering Asymmetry)

  • 하정수;정연환
    • 시스템엔지니어링학술지
    • /
    • 제16권2호
    • /
    • pp.110-117
    • /
    • 2020
  • In this paper, we estimated the straight line stability by performing a 3 degree of freedom spiral test simulation of a intact/damaged surface combatant using the hydrodynamic coefficient obtained through the PMM(Planar motion mechanism) test based on system engineering process. A model ship was ONR Tumblehome and damaged compartment was set on the starboard bow. As a result of conducting a spiral test simulation based on the experimental results of J.Ha (2018), the asymmetric straight line stability due to the damaged compartment was confirmed. In the case of a ship in which the starboard bow was damaged, it was confirmed that it had the characteristic to deflect to the left when going straight. Also, when estimating the straight line stability of a both port and starboard asymmetric surface combatant, a separated equation of motion model that sees the port and starboard as different ships seems suitable.

Static and quasi-static slope stability analyses using the limit equilibrium method for mountainous area

  • Hosung Shin
    • Geomechanics and Engineering
    • /
    • 제34권2호
    • /
    • pp.187-195
    • /
    • 2023
  • Intensive rainfall during the summer season in Korea has triggered numerous devastating landslides outside of downtown in mountainous areas. The 2D slope stability analysis that is generally used for cut slopes and embankments is inadequate to model slope failure in mountainous areas. This paper presents a new 3D slope stability formulation using the global sliding vector in the limit equilibrium method, and it uses an ellipsoidal slip surface for static and quasi-static analyses. The slip surface's flexibility of the ellipsoid shape gives a lower FS than the spherical failure shape in the Fellenius, Bishop, and Janbu's simplified methods. The increasing sub-columns of each column tend to increase the FS and converge to a steady value. The symmetrical geometric conditions of the convex turning corners do not indicate symmetrical failure of the surface in 3D analysis. Pseudo-static analysis shows that the horizontal seismic force decreases the FS and increases the mass volume at the critical failure state. The stability index takes the FS and corresponding sliding mass into consideration to assess the potential risk of slope failure in complex mountainous terrain. It is a valuable parameter for selecting a vulnerable area and evaluating the overall risk of slope failure.

김해지방의 지표경계층내의 열수지 및 안정도 변화에 관한 연구 (A Study on the Variations of Stability and Heat Budget in the Planetary Boundary Layer at Kimhae)

  • 박종길;이화운;김유근;이순환
    • 한국대기환경학회지
    • /
    • 제13권2호
    • /
    • pp.103-113
    • /
    • 1997
  • The research described in this paper was conducted to estimate the stability and heat budget in planetary boundary layer (PBL) at Kimhae. The upper air observation was carried out during period from 3 Februsry 1993 to 5 February 1993 at Kimhae. The surface observation data used the one during period from 1 April 1994 to 31 March 1995. The maximum height of inversion layer observed at Kimhae was 310 m. Destruction of the inversion was simultaneously occurred at the surface and the mid-layer (200 $\sim$ 300 m), however the origin of destruction is different each other. The surface inversion is destructed by surface heating owing to growing radiation in surface but disappearance of the mid-layer inversion is related to the upper cold air movement.

  • PDF

Three-dimensional simplified slope stability analysis by hybrid-type penalty method

  • Yamaguchi, Kiyomichi;Takeuchi, Norio;Hamasaki, Eisaku
    • Geomechanics and Engineering
    • /
    • 제15권4호
    • /
    • pp.947-955
    • /
    • 2018
  • In this study, we propose a three-dimensional simplified slope stability analysis using a hybrid-type penalty method (HPM). In this method, a solid element obtained by the HPM is applied to a column that divides the slope into a lattice. Therefore, it can obtain a safety factor in the same way as simplified methods on the slip surface. Furthermore, it can obtain results (displacement and strain) that cannot be obtained by conventional limit equilibrium methods such as the Hovland method. The continuity condition of displacement between adjacent columns and between elements for each depth is considered to incorporate a penalty function and the relative displacement. For a slip surface between the bottom surface and the boundary condition to express the slip of slope, we introduce a penalty function based on the Mohr-Coulomb failure criterion. To compute the state of the slip surface, an r-min method is used in the load incremental method. Using the result of the simple three-dimensional slope stability analysis, we obtain a safety factor that is the same as the conventional method. Furthermore, the movement of the slope was calculated quantitatively and qualitatively because the displacement and strain of each element are obtained.

분자동역학 해석을 이용한 액체 극미세사의 열역학적 물성과 안정성 연구 (A Molecular Dynamics Study of Thermophysical Properties and Stability of Nanoscale Liquid Thread)

  • 김병근;최영기;권오명;박승호;이준식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1366-1371
    • /
    • 2003
  • Molecular dynamics (MD) simulations are conducted to investigate the thermophysical characteristics and the stability of liquid threads for various conditions. A cylindrical thread in the simulation domain is made of Lennard-Jones molecules. The surface tension of liquid threads can be determined from local densities, local normal and transverse components of the pressure force. In order to understand the effects of thread radii on surface tensions, the Tolman equation is modified on the basis of the cylindrical coordinates for prediction of surface tensions. Surface tensions calculated from the MD simulation agree with the prediction from the modified Tolman equation. In addition, surface tensions decrease linearly with increasing system temperature. For a binary system, the surface tension decreased linearly compared to that for a pure system with increasing binary ratio of solute molecules which have relatively large value of the affinity coefficient. For a fixed binary ratio, the surface tension increased slightly with the affinity coefficient and the maximum value appear around where the affinity coefficient is 1.5 and decreased rapidly for upper value of 1.5. In addition, the critical wavelengths of perturbations are proven to be directly proportional to the equimolar dividing radii of the liquid threads.

  • PDF

Enhanced Stability of Organic Photovoltaics by Additional ZnO Layers on Rippled ZnO Electron-collecting Layer using Atomic Layer Deposition

  • Kim, Kwang-Dae;Lim, Dong Chan;Jeong, Myung-Geun;Seo, Hyun Ook;Seo, Bo Yeol;Lee, Joo Yul;Song, Youngsup;Cho, Shinuk;Lim, Jae-Hong;Kim, Young Dok
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.353-356
    • /
    • 2014
  • We fabricated organic photovoltaic (OPV) based on ZnO ripple structure on indium tin oxide as electron-collecting layers and PTB7-F20 as donor polymer. In addition, atomic layer deposition (ALD) was used for preparing additional ZnO layers on rippled ZnO. Addition of 2 nm-thick ALD-ZnO resulted in enhanced initial OPV performance and stability. Based on photoluminescence results, we suggest that ALD-ZnO layers reduced number of surface defect sites on ZnO, which can act as electron-hole recombination center of OPV, and increased resistance of ZnO towards surface defect formation.

$4degC$ 물에 잠겨있는 경사진 등온 벽주위 비평행 자연대류의 파형 안정성 (The wave stability of the nonparallel natural convection flows adjacent to an inclined isothermal surface submerged in water at $4degC$)

  • 황영규;장명륜
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.644-653
    • /
    • 1991
  • A wave instability problem is formulated for natural convection flows adjacent to a inclined isothermal surface in pure water near the density extremum. It accounts for the nonparallelism of the basic flow and temperature fields. Numerical solutions of the hydrodynamic stability equations constitute a two-point boundary value problem which are accurately solved using a computer code COLSYS. Neutral stability results for Prandtl number of 11.6 are obtained for various angles of inclination of a surface in the range from-10 to 30 deg. The neutral stability curves are systematically shifted toward modified Grashof number G=0 as one proceeds from downward-facing inclined plate(.gamma.<0.deg.) to upward-facing inclined plate (.gamma.>0.deg.). Namely, an increase in the positive angle of inclination always cause the flows to be significantly more unstable. The present results are compared with the results for the parallel flow model. The nonparallel flow model has, in general, a higher critical Grashof number than does the parallel flow model. But the neutral stability curves retain their characteristic shapes.