• Title/Summary/Keyword: Surface Road Temperature Change

Search Result 26, Processing Time 0.02 seconds

Field Test of Tunnel Lining Temperature Variation due to Heating Element Attached to Tunnel Lining Surface (터널라이닝 표면에 부착된 발열체로 인한 라이닝의 온도변화 현장실험)

  • Jin, Hyunwoo;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.4
    • /
    • pp.17-21
    • /
    • 2019
  • In the cold region, the frozen damages in highway tunnels and regular road tunnels have widely been investigated and reported, but the measurement has not been sufficient made. The average temperature in cold region is below the zero, resulting in that the damage due to freezing at the entrance/exit of tunnel is more severe than in the middle of tunnel. In this study, a heating element was developed to prevent the tunnel lining from being frozen by enforcing to increase the temperature of tunnel lining. Then field tests using the developed heating element were performed and it was ensured that the temperature of tunnel lining increased after a certain time.

A Basic Experimental Study on the Heat Energy Harvesting for Green SOC (녹색 사회기반시설의 열 에너지 하베스팅을 위한 기초실험 연구)

  • Jo, Byung-Wan;Lee, Duk-Hee;Lee, Dong-Yoon;Kim, Yoon-Ki
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.93-101
    • /
    • 2010
  • As the number of indispensable needs of clean energy increases due to the green new deal revolution, the possibility of heat energy harvesting from the surrounding infrastructures such as a railroad or highway was verified. In order to find more efficient usage of a heat source, the possibility of transforming heat into electricity were confirmed using Bi-Te type thermoelectric element, and electrical quality were tested with experiments of different heat source and environmental change in the surrounding infrastructures. After careful experiments, the possibility of collecting thermal energy and findings of the heat temperature change in infrastructrue are verified with a result of obtaining almost 20.82W in 70 celcius($^{\circ}C$) temperature differences and $1m^2$ surface area. Consequently, the ratio of heat temperatiure change and transforming surface area is the most crucial factor in the harvesting heat energy, and reducing thermal loss and improving thermal convection as well as transformation efficiency of thermoelectric element is required to get more efficient and durable generation.

Freezing and Deflection Characteristics of Flexible Pavement Structure Using Frost Model Test (동상모형실험을 통한 아스팔트 포장체의 동결 및 처짐 특성)

  • Shin, Eun-Chul;Hwang, Soon-Gab;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.3
    • /
    • pp.27-35
    • /
    • 2012
  • In this paper, the frost heaving and thawing characteristics of flexible pavement structure were evaluated in the large scale freezer which have a specification of temperature range $-20^{\circ}C{\sim}10^{\circ}C$ and $3.2m(L){\times}3.2m(B){\times}2.4m(H)$ in size. The insulated steel box with the size of $0.9m(L){\times}0.9m(B){\times}0.9m(H)$ was used to simulate actual pavement road structure. The variation of temperature, frost heave amount and frost heave pressure were measured through the instrument of TDS-602 data logger. LFWD (light falling weight deflectometer) was used to determine the change of deflection due to the frost heaving and thawing. Furthermore, the influence of aggregate layer to the freezing of the subgrade soil was studied to verify the function and effectiveness of the anti-freezing layer.

A Study for Joint Freezing in Concrete Pavement (콘크리트포장의 줄눈의 잠김에 대한 연구)

  • Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.3 no.1 s.7
    • /
    • pp.165-176
    • /
    • 2001
  • Joints in jointed concrete Pavement are designed to control against randomly occurred cracks within slabs, which may be caused by temperature or moisture variation. The advantage of these artificial cracks (joints) over naturally occurred cracks are easy access of protections, such as installation of joint seal and load transfer mechanism. The potential benefits of joint seals are to prevent infiltration of surface water through the joint into underlying soil and intrusion of incompressible materials (debris, fine size aggregate) in to the joint, which may prevent weakening of underlying soils and spallings due to excessive compressive stress, respectively. For the adequate design of joint seal, horizontal variation of joint widths (horizontal joint movements) are essential inputs. Based on long-term in-situ joint movement data of sixteen jointed concrete pavement sections in Long Term Performance Pavement Seasonal Monitoring Program (LTPP SMP), it was indicated that considerable Portion of joints showed no horizontal movements with change in temperature. This Phenomenon is called 'Joint Freezing'. Possible cause for joint freezing is that designed penetrated cracks do not occur at a joint. In this study, a model for the prediction of the ratio of freezing joints in a particular pavement sections is proposed. In addition, possible effects of joint freezing against pavement performance are addressed.

  • PDF

A Study on the Resistance Against Environmental Loading of the Fine-Size Exposed Aggregate Portland Cement Concrete Pavements (소입경 골재노출콘크리트포장의 환경하중 저항성에 대한 연구)

  • Chon, Beom-Jun;Lee, Seung-Woo;Chae, Sung-Wook;Bae, Jae-Min
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.99-109
    • /
    • 2009
  • Fine-size exposed aggregate portland cement concrete pavements (FEACP) have surface texture of exposed aggregate by removing upper 2$\sim$3mm mortar of surface of which curing is delayed by using delay-setting agent. FEACPs have advantages of maintaining low-noise and adequate skid-resistance level during the performance period than general portland cement concrete pavements. It is necessary to ensure the durability environmental loading to prevent unexpected distress during the service life of FEACP. In the process of curing, volume change accompanied change in by moisture and temperature could be an important cause of crack in concrete to construct for successful FEACP, The use of chloride containing deicer may accelerate defects of concrete pavement, such as crack and scaling. This study aim to evaluate environmental loading resistance of FEACP, based on the estimation of shrinkage-crack-control-capability by moisture evaporation and scaling by deicer in freeze-thaw reaction.

  • PDF

Study on the Performance Evaluation of Colored Asphalt Hot Mixtures through the Usage of Grain-typed Color Additive (알갱이 형태의 유색첨가제를 이용한 칼라 아스팔트 혼합물의 공용성 평가 연구)

  • Lee, Sang-Yum;Ahn, Yong-Ju;Mun, Sung-Ho;Kim, Yeong-Min
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.117-122
    • /
    • 2011
  • Asphalt concrete pavement can be widely seen on urban streets, highways, parking lots, and bike trails. Asphalt concrete pavement is relatively temperature sensitive materials due to the viscoelastic behavior, which can be defined as flexible performance in summer and rigid performance in winter. In terms of maintenance, it can be fixed quite easily if damaged. In addition, asphalt concrete pavement is generally found to be black and grey in color. However, several colors can be adopted to change the appearance of plain old boring, black and grey. Generally, there are two types of color systems in hot mix asphalt concrete materials. One system uses colored cementitious material that is applied to pavement surface through coating the surface of the asphalt pavement. The major disadvantage to this system requires a careful skill set to be used on the construction site in order to prevent taking off the cementitious material. The other coloring system colors the asphalt hot mixtures through using color additives. The main advantage to this system is that the asphalt pavement layer is colored using the same techniques that are already used in paving. The disadvantage is that the colors are limited to mainly reds and browns. In this study, a suggested color additive was evaluated, based on rutting, moisture sensitivity, and fatigue cracking performance.