• Title/Summary/Keyword: Surface Replication

Search Result 110, Processing Time 0.03 seconds

Optimization of Ultrasonic Imprinting Using the Response Surface Method (반응표면법을 이용한 초음파 임프린팅 공정의 최적화)

  • Jung, W.S.;Cho, Y.H.;Park, K.
    • Transactions of Materials Processing
    • /
    • v.22 no.1
    • /
    • pp.36-41
    • /
    • 2013
  • The present study examines the micro-pattern replication on a plastic film using ultrasonic imprinting. Ultrasonic imprinting uses ultrasonic waves to generate repetitive microscale deformation in the polymer film. The resulting deformation heat on the surface of the film causes the surface region to soften sufficiently so that a replication of the micro-pattern can be obtained. To successfully replicate the micro-pattern on a large area of polymer film, a high replication ratio is needed as well as good uniformity over the entire region. In this study, a horn design is investigated by finite element analysis and is optimized through a response surface analysis. In the ultrasonic imprinting experiments, the response surface method was also used to determine the optimal processing conditions for better replication characteristics.

Fractographic Analysis of Ceramic Composites by Transmission Electron Microscopy using Surface Replication Technique (표면복제법을 이용한 세라믹 복합재료 파괴현상의 투과전자현미경 분석)

  • Jun, Hyeung-Woo;Kim, Gyeung-Ho;Kim, Byung-Ho
    • Applied Microscopy
    • /
    • v.26 no.4
    • /
    • pp.447-456
    • /
    • 1996
  • Fracture surfaces of materials contain useful information ranging from crack path to the mechanism of fracture. Since limitation of electron transparency requires a sample in the form of thin foil for TEM observations, it is impossible to extract such information directly from the fracture surfaces. In this study, the method of surface replication from the ceramic fracture surface is employed to characterize the process of crack propagation in ceramic matrix composites using TEM analysis. The surface replica from the fracture surface in ceramic materials provides detailed surface morphology and more importantly, loosened particles on the fracture surface are collected. Electron diffraction and chemical composition analyses of these particles reveal crack path in the specimen. Furthermore, one can determine the mode of fracture by observing the fracture surface morphology from the image of replica. Two examples are given to illustrate the potential of the surface replication technique. In the first example, apparent toughness increase in $B_{4}C-Al$ composites at high strain rate is investigated by surface replication to elucidate the mechanism of fracture at different strain rates. The polytypes of SiC formed during the sintering of SiC-AlN composite and their effect on the fracture behavior of SiC-AlN composite are analyzed in the second example.

  • PDF

Relationship between Replication and Structure of Micro/Nano Molded Parts

  • Ito, Hiroshi;Kazama, Kunihiko;Kikutani, Takeshi
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.368-368
    • /
    • 2006
  • Micro-molded parts can be defined as parts with microgram weight, parts with micro-structured surface, and parts with micro-precision. In this study, various micro-scale molded parts for various polymers were produced by using a precision micro-molding machine. Molded parts with nano-structure surface were also produced to analyze the effect of molding conditions on replication of surface pattern and higher-order structure development of molded parts. Replication of molded parts was influenced by material properties, molding conditions and size of surface pattern. Higher-order structure of molded parts was investigated by using polarized microscope. Skin-shear-core regions inside the molded parts were observed and shear region affected to surface replication.

  • PDF

Effects of Packing Pressure and Time on Injection Molding of Plastic Micro-channel Plates (플라스틱 마이크로 채널 기판 사출성형 시 보압의 영향)

  • Woo, Sang-Won;Park, Si-Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.224-229
    • /
    • 2016
  • Recently, polymeric micro-fluidic biochips with numerous micro patterns on the surface were fabricated by injection molding for realizing low-cost mass production of devices. To evaluate the effects of process parameters on large-scale micro-structure replication, a $50{\times}50mm^2$ tool insert with surface structures having a patterns of trapezoidal shapes (height: $30{\mu}m$) was employed. During injection molding, PMMA was used; packing phase parameters and mold temperature were investigated. The replicated surface textures were quantitatively characterized by confocal laser microscopy with 10-nm resolution. The degree of replication at low mold temperatures was found to be higher than that at high mold temperature at the beginning of the packing stage. Thereafter, the degree of replication increased to a greater extent at higher mold temperatures; application of higher mold temperatures improved the degree of replication.

Standardization of Surface Replication Procedures for Life Assessment of High Temperature Facilities (고온설비 수명평가를 위한 표면복제 절차의 표준화)

  • Park, Jong-Seo;Lee, Hae-Mu;Baek, Un-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2381-2386
    • /
    • 2000
  • Surface replication is playing an important role in the assessment of creep damage and remaining life of high temperature components. As the replication procedures, however, have not been standardized in domestic industry, its standardization is proposed in this study. For this purpose, the 2.25Cr-IMo steel was heat treated(5 min at 1,300 0C and oil quenched) to produce a simulated HAZ microstructure, and crept in air at 575 0C and under 120 MPa to produce artificial cavities. Then, the effect of surface preparation procedures on the quality of replicas was investigated using this sample. As a result, it was demonstrated that the presence of cavities may be observed readily or missed depending on the surface preparation procedures followed. Therefore it is essential to repeat three polishing/etching cycles at least in order to reveal cavitation damage accurately, even though it may be tedious or time-consuming.

Fabrication of the Micro-structured DVD-RAM Substrates (미세 형상을 갖는 DVD-RAM 기판의 성형에 관한 연구)

  • 문수동
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.167-170
    • /
    • 2000
  • Recently the sub-micron structured substrates of 0.74 ${mu}ell$ track pitch and 800 $\AA$groove depth are required for DVD-RAM and the track pitch is expected to be narrower as the need for the information storage density is getting higher. For the accurate replication of the land-groove structure in the stamper to the plastic substrates it is important to control the injection -compression molding process such that the integrity of the replication for the land-groove structure is maximized. in the present study polycarbonate substrates were fabricated by injection comression molding and the land-groove structure regarded as one of mold temperature and the compression pressure on the integrity of the replication were examined experimentally. An efficient design methodology using the response surface method (RSM) the central composite design(CCD) technique and the analysis-of-variance (ANOVA) was developed to obtain the optimum processing conditions which maximize the integrity of the replication with a limited number of experiments.

  • PDF

Design of UV-Molding Process to Maximize the Replication Properties in Microstructures (미세구조체의 전사 특성을 향상시키기 위한 UV 성형 공정의 설계)

  • Kim, Dong-Mook;Kim, Seok-Min;Sohn, So-Young;Kang, Shin-Ill
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.450-454
    • /
    • 2003
  • It is important to control the processing conditions to maximize the replication quality of UV-molded microstructure. In the present study, the tip radius anil surface roughness of V-groove structure were measured to quantify the replication quality. UV-curing dose and the applied pressure were experimentally selected as the governing Processing conditions that affect the replication quality of the UV-molded part. Finally. an experimental optimization technique combining central composite design and desirability function approach was used to maximize the replication quality of UV-molded structure.

Analysis of anti-adhesion property in replication of patterns of sub-micrometers (Sub-micrometer 크기의 패턴의 복제시 발생되는 이형 특성의 분석)

  • Lee, Nam-Seok;Kang, Shin-Ill
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.940-944
    • /
    • 2003
  • With the increasing demand for plastic micro components, micro-/nano-molding using the mother stamper has received much attention. If the replication temperature is too high, the adhesion between the stamper and the polymer melt may deteriorate the surface quality of the replicated part, excessively wearing down the stamper. In this paper, an experimental method analyzes the temperature dependency of the anti-adhesion property between the actual stamper with patterns of sub-micrometer and the polymer melt. As a practical example, a correlation between the contact angle of the stamper and the surface quality of the molded substrates as a function of the replication temperature, respectively, was obtained quantitatively.

  • PDF