• Title/Summary/Keyword: Surface Properties Test

Search Result 1,813, Processing Time 0.03 seconds

An Experimental Study to Secure Electromagnetic Pulse Shielding Performance of Concrete Coated by an Arc Metal Spraying Process (아크 금속 용사 공법에 의해 코팅된 콘크리트의 전자기파 차폐 성능 확보를 위한 실험적 연구)

  • Jang, Jong-Min;Jeong, Hwa-Rang;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.519-527
    • /
    • 2021
  • In this study, an electromagnetic pulse shielding effect was obtained by applying the arc metal spraying method to the ordinary concrete. For this study, to evaluate the electrical properties in the thickness of the metal sprayed coating, 8 types of metals(Cu, CuAl, CuNi, CuZn, Al, Zn, ZnAl, AlMg) were sprayed as coatings with a thickness of 100, 200 and 500㎛. The electrical conductivity on the surface was measured with a 4-pin probe, and an electromagnetic wave shielding effect test was performed according to KS. Based on the test results, 200 ㎛ was proposed as an optimal metal coating thickness for electromagnetic pulse shielding, and it was thermally sprayed on a 300×300×100mm concrete specimen to analyze the electromagnetic wave shielding performance. However, in the area of adhesion strength, the maximum was 1.11MPa, which was found to be less than 74% of the target performance.

Fabrication of silver stabilizer layer by coating process using nano silver paste on coated conductor (나노실버페이스트를 사용하는 코팅공정에 의한 coated conductor의 은 안정화층 제조)

  • Lee, Jong-Beom;Kim, Byeong-Joo;Kim, Hye-Jin;Yoo, Yong-Su;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.1-4
    • /
    • 2009
  • Mechanical and electrical properties of silver stabilizer layer of coated conductor, which as prepared with nano silver paste as starting materials, have been investigated, Nano silver paste was coated on a YBCO film by dip coating process at a diping speed of 20m/min. Coated film was dried in air and heat treated at $400{\sim}700^{\circ}C$ in an oxygen atmosphere. Adhesion strength between YBCO and silver layer was measured by a tape est(ASTM D 3359). Hardness and electrical conductivity of the samples were measured by pencil hardness test (ASTM D 3363) and volume resistance test by LORESTA-GP (MITSHUBISHD, respectively. The sample heat-treated at $500^{\circ}C$ showed poor adhesion 1B, but samples heat treated at higher than $600^{\circ}C$ showed enhanced adhesion of 5B. The silver layer heat-treated at $700^{\circ}C$ showed the high hardness value larger than 9 H, low volume resistance, surface resistance value as well as superior current carrying capacity compared to sputtered silver. SEM observations showed that a dense silver layer was formed with a thickness of about $2{\mu}m$. Dip coated silver layer prepared by using nano silver paste showed superior electrical and mechanical characteristics.

Shear Load-Transfer Function of Rock-Socketed Drilled Shafts Considering Borehole Roughness (굴착면 거칠기를 고려한 암반 근입 현장타설말뚝의 주면 하중전이함수 제안)

  • Seol, Hoon-Il;Woo, Sang-Yoon;Han, Keun-Taek;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.23-35
    • /
    • 2006
  • Shear load transfer characteristics of rock-socketed drilled shafts were analyzed. The constant normal stiffness (CNS) direct shear tests were performed to identify the major influencing factors of shaft resistance, i.e., unconfined compressive strength, borehole roughness, normal stiffness, initial confining stress, and material properties. Based on the CNS tests, shear load transfer function of drilled shafts in rocks is proposed using borehole roughness and the geological strength index (GSI), which indicates discontinuity and surface condition of rock mass in Hoek-Brown criterion (1997). The proposed load-transfer function was verified by the load test results of seven rock-socketed drilled test shafts subjected to axial loads. Through comparisons of the results of load tests, it is found that the load-transfer function by the present study is in good agreement with the general trend observed by in situ measurements, and thus represents a significant improvement in the prediction of load transfer of drilled shafts.

Study on the Room Temperature Degreasing Conditions of Steel Sheet for Electrogalvanizing (전기아연도금용 강판의 상온 탈지 조건 연구)

  • Tae-Yeon Park;Chae-Won Kim;Su-Mi Yang;Hee-Jun Hong;In-Chul Choi
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • The conventional degreasing process involves removing oil and contaminants at temperatures above 80℃, resulting in excessive energy consumption, increased process costs, and environmental issues. In this study, we aimed to find the optimal degreasing conditions for the pre-treatment process of electro-galvanizing cold-rolled steel sheets, conducted efficiently at room temperature without the need for a separate heating device. To achieve this, we developed a room temperature degreasing solution and a brush-type degreasing tool, aiming to reduce energy consumption and normalize the decrease in degreasing efficiency caused by temperature reduction. Alkaline degreasing solution were prepared using KOH, SiO2, NaOH, Na2CO3, and Sodium Lauryl Sulfate, with KOH and NaOH as the main components. To enhance the degreasing performance at room temperature, we manufactured additives including sodium oleate, sodium stearate, sodium palmitate, sodium lauryl sulfate, ammonium lauryl sulfate, silicone emulsion, and EDTA-Na. Room temperature additives were added to the alkaline degreasing solution in quantities ranging from 0.1 to 20 wt.%, and the uniformity of degreasing and the adhesion of the galvanized layer were evaluated through Dyne Test, T-bending Test, OM, SEM, and EDS analyses. The results indicated that the optimal degreasing solution composition consisted of NaOH (30 g/L), Na2CO3 (30 g/L), SLS (6 g/L), and room temperature additives (≤1 wt%).

Study on the surface modification of zirconia with hydrophilic silanes (친수성기를 가진 실란을 이용한 지르코니아의 표면의 개질 연구)

  • Lee, Soo;Moon, Sung Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.247-254
    • /
    • 2016
  • Since microzirconia has excellent thermal and mechanical properties with high chemical and electrical resistance, it can be used in various fields. When the surface of zirconia becomes hydrophilic, its dispersibility in water will be improved as well as the resistance to most hydrophobic contaminants will be increased. In this study, we investigated the introduction of a hydrophilic groups on the microzircornia surface through hydrolysis and condensation reactions with two different silanes containing hydrophilic functional groups, such as ${\gamma}$-aminopropyltrimethoxysilane (APS) and ${\gamma}$-ureidopropyltrimethoxysilane (UPS) at different pH and concentration conditions. A covalent bond formation between the surface hydroxyl groups of zirconia and that of hydrolyzed silanes was confirmed by ninhydrin test and FT-IR spectroscopy. However, the presence of Si on the surfaces of both silane modified microzirconias was unable to detect by SEM/EDS technique. In addition, particle size analysis results provide that the size of microzirconia was changed to smaller or bigger than that of original zirconia due to crushing and aggregation during the modification process. The water dispersibility was improved for only APS modifed zirconia (AS-2 and AS-3) under neutral pH condition, but the water dispersibility and stability for all cases of 0.5~2% UPS modifed zirconia (US series) were much improved.

Experimental Study of Freshwater Discharge and Saltwater Intrusion Control in Coastal Aquifer (해안대수층에서 담수-염수 경계면 변화에 따른 최대담수양수량과 염수침투제어에 대한 실험적 연구)

  • Suh, Seong-Kook;Oh, Chang-Moo;Kim, Won-Il;Ho, Jung-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.159-168
    • /
    • 2010
  • This study investigates the relationships between the maximum freshwater pumping discharge and hydraulic properties of coastal aquifer using a laboratory model. The experiment performed the fresh pumping test in various locations near the saltwedge induced by saltwater intrusion to freshwater over aquifer characteristics of hydraulic conductivity, salinity, and ground surface slope. Saltwater pumping also tested to protest saltwater intrusion to the excessively discharging freshwater well. The maximum freshwater discharges were achieved, and then the optimum saltwater discharges were measured. It is found that greater hydraulic conductivity and ground surface slope produced greater the maximum freshwater pumping discharge. Salinity gave less impact on the pumping discharge relatively. Higher freshwater discharge was found at higher hydraulic conductivity and steeper ground surface slope. The optimum saltwater discharge required 14% more pumping rate than the maximum freshwater discharge to keep saltwater intrusion to the freshwater pumping well. Pumping well located closer to salt-wedge profile promoted less freshwater pumping discharge. Therefore, pumping well location, hydraulic conductivity, ground surface slope, and salinity should be taken into account in freshwater pumping in coastal aquifer.

Study on Graft Polymerization of Acrylate and Methacrylate Monomers onto the Carbon Black Surface (Carbon Black 표면에의 아크릴레이트 및 메타크릴레이트의 그라프트 중합에 관한 연구)

  • Goo, Hyung-Seo;Chang, Byung-Kwon;Kim, Yong-Moo;Choi, Kyu-Suk
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.395-405
    • /
    • 1994
  • The various functional groups, such as hydroxyl(-OH), carboxyl(-COOH) and quinonic oxygen(OC<) on the carbon black(abbreviated to CB) surface were activated with n-butyl lithium solution in n-hexane and then acrylate and methacrylate monomers were graft polymerized onto these activated anionic sites and CB-grafted polymers were obtained. To separate homopolymers from reaction mixture, non-solvent precipitation method or centrifugal separating method were applied. Subsequently, conversion, grafting ratio and efficiency were determined at various reaction temperatures and times. In case of acrylates, the grafting ratio showed 20~30% but methacrylates showed 150~200%. Also the anion polymerizations between CB and monomers were nearly reached to equilibrium state within one or two hours under each reaction temperatures but conversion and grafting ratio were increased a little with reaction temperature increase. In colloidal dispersion stability test, before heat-drying, the all CB-grafted polymers showed good dispersed stability in good solvents for acrylic and methacrylic homopolymers. Futhermore, CB-polymethacrylates were found to show excellent collidal properties for good solvents of methacrylic homopolymer even after heat-drying. Identification of the grafted polyacrylates and polymethacrylates onto the CB surface was performed by FT-IR spectroscopy. In addition, electric resistance values of CB-grafted polymers were measured by Four-probe method, and the increase of the grafting ratio showed the increase of the surface resistance.

  • PDF

Corrosion Properties of Atomic Layer Deposited TiO2, Al2O3 and TiO2-Al2O3 Nanolaminated Film Coated 316L Stainless Steel (원자층 증착법에 의한 TiO2, Al2O3, 및 TiO2-Al2O3 나노라미네이트 박막이 316L Stainless Steel의 부식특성에 미치는 영향)

  • Lee, Woo-Jae;Wan, Zhixin;Kim, Da Young;Jang, Kyung Su;Choi, Hyun-Jin;Choi, Woo-Chang;Kwon, Se Hun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.1
    • /
    • pp.35-41
    • /
    • 2017
  • $TiO_2$, $Al_2O_3$, and $TiO_2-Al_2O_3$ nanolaminated films were grown by atomic layer deposition (ALD) on the 316L stainless steel (SS316L) substrates at a temperature of $150^{\circ}C$. The growth kinetics of $ALD-TiO_2$ and $Al_2O_3$ thin films were systematically investigated in order to precisely control the thickness of each layers in the $TiO_2-Al_2O_3$ nanolaminated films using a high-resolution transmission electron microscopy. And, the exact deposition rates of $ALD-TiO_2$ on $Al_2O_3$ surface and $ALD-Al_2O_3$ on $TiO_2$ surface were revealed to be 0.0284 nm/cycle and 0.11 nm/cycle, respectively. At given growth conditions, the microstructures of $TiO_2$, $Al_2O_3$ and $TiO_2-Al_2O_3$ nanolaminated films were amorphous. The potentiodynamic polarization test revealed that the $TiO_2-Al_2O_3$ nanolaminated film coated SS316L had a best corrosion resistance, although all ALDcoated SS316L exhibited a clear improvement of the corrosion resistance compared with a bare SS316L.

Electrochemical Properties of Using MnO2-HCS Composite for Supercapacitor (MnO2-HCS 복합체를 이용한 슈퍼커패시터의 전기화학적 특성)

  • Jin, En Mei;Jeong, Sang Mun
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.183-189
    • /
    • 2018
  • Hollow carbon spheres (HCS) and carbon spheres (CS) were prepared by a hydrothermal reaction and they were introduced as a substrate for the deposition of $MnO_2$ nanoparticles. The $MnO_2$ nanoparticles were deposited on the carbon surface by a chemical redox deposition method. After deposition, the $MnO_2$ nanoparticles were uniformally distributed on the carbon surface in a slit-shape, and sparse $MnO_2$ slits appeared on the HCS surface. The $MnO_2-HCS$ showed an initial specific capacitance of $164.1F\;g^{-1}$ at scan rate of $20mv\;s^{-1}$, and after 1,000 cycles, the specific capacitance was maintained to $141.3F\;g^{-1}$. The capacity retention of $MnO_2-HCS$ and $MnO_2-CS$ were calculated to 86% and 78% in the cycle performance test up to 1,000 cycles, respectively. $MnO_2-HCS$ showed a good cycle stability due to the mesoporous hollow structure which can cause a faster diffusion of the electrolyte and can easily adsorb and desorb $Na^+$ ions on the surface of the electrode.

A Study on Microstructure, Mechanical Properties, Friction and Adhesion of TiN Thin Films Coated on SKD61 and Radical Nitrided SKD61 Substrates by Arc Ion Plating (SKD61과 Radical Nitriding 처리된 SKD61 기판상에 Arc Ion Plating으로 증착된 TiN 박막의 미세구조 및 기계적 특성, 마찰 및 접착력에 관한 연구)

  • Joo, Yun-Kon;Yoon, Jae-Hong;Fang, Wei;Zhang, Shi-Hong;Cho, Tong-Yul;Ha, Sung-Sik
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.6
    • /
    • pp.254-257
    • /
    • 2007
  • TiN coating on tool steel has been widely used for the improvement of durability of tools. In this work, radical nitriding(RN) is carried out on SKD61 at $450^{\circ}C$ for 5 hours in the ammonia gas pressure $2.7{\times}10^3\;Pa$. The TiN coating is carried out by arc ion plating(AIP) with the process parameters: arc power 150 A, bias voltage -50V, coating time 40 minutes and nitrogen gas pressure $4{\times}10^3\;Pa$. Hardness, elastic modulus, friction coefficient and adhesion of TiN coating on substrates of both TiN/SKD61 and TiN/RN SKD61 coatings are investigated comparatively. The primary crystalline faces of TiN surface are(200) and(111) for TiN/SKD61 and TiN/RN SKD61 respectively. In addition to the primary phase, Fe phase exists in TiN/SKD61 coating, but not in TIN/RN SKD61. The hardness of TiN/RN SKD61 is about 700 Hv, 250 Hv(56%) higher than that of TiN/SKD61 at the near interface of TiN and substrates. At the TiN surface, hardness of TiN/RN SKD61 is 2,149 Hv, 71 Hv(3%) higher than that of TiN/SKD61. The elastic modulus of TiN coating is improved to 26.7 GPa(6%) by radical nitriding. The adhesion is improved by the RN coating showing no spalling. buckling and chipping on the scratch test track which are shown on the non-RN TiN/SKD61.