• Title/Summary/Keyword: Surface Meshing Algorithm

Search Result 8, Processing Time 0.028 seconds

Quadrilateral Mesh Generation on Trimmed NURBS Surfaces

  • Chae, Soo-Won;Kwon, Ki-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.592-601
    • /
    • 2001
  • An automatic mesh generation scheme with unstructured quadrilateral elements on trimmed NURBS surfaces has been developed. In this paper NURBS surface geometries in the IGES format have been employed to represent geometric models. For unstructured mesh generation with quadrilateral elements, a domain decomposition algorithm employing loop operators has been modified. As for the surface meshing, an indirect 2D approach is proposed in which both quasi-expanded planes and projection planes are employed. Sampled meshes for complex models are presented to demonstrate the robustness of the algorithm.

  • PDF

Automatic Generation of Tetrahedral Meshes from General Sections (일반 단면으로부터 사면체 요소망의 자동생성)

  • Chae, Su-Won;Lee, Gyu-Min;Sin, Sang-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.196-205
    • /
    • 2000
  • Computed Tomography (CT), Nuclear Magnetic Resonance Imaging (MR1) and some ultrasound techniques make it possible to obtain cross sections of human body or mechanical parts. In CAD system, a series of sectional surfaces can also be obtained from solid models of 3D objects. In this paper we introduce a tetrahedral meshing algorithm from these series of general sections using basic operators. In this scheme. general sections of three-dimensional object are triangulated first and side surfaces between two sections are triangulated by the use of tiling process. Finally tetrahedral meshing process is performed on each layer of 3D objects, which is composed of two general sections and one side surface.

The Stereo Camera Measurement of Point Cloud on 3D Object and the Calculation of Volume Based on Irregular Triangular Mesh (스테레오 카메라와 측정에 의한 3D 대상체 포인트 클라우드의 불규칙 삼각 매싱 기반 체적 계산)

  • Lee, Young-Dae;Cho, Sung-Youn;Kim, Kyung;Lee, Dong-Gyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.153-159
    • /
    • 2012
  • For the construction of safe and clear urban environment, it is necessary that we identify the rubbish waste volume and we know the accuracy volume. In this paper, we proposed the algorithm computes the waste volume periodically for the way of waste repository standard. After stereo camera calibration, we obtained the point cloud on the surface of the object and took this as the input of the calculation algorithm of the object volume. We proposed the volume calculation algorithms based on the non-uniform triangular meshing methods and verified the validity of the algorithm through simulation and real experiments. The proposed algorithm can be used not only as the volume calculation of the waste repository but also as the general volume calculation of a three dimensional object.

A New Indirct Quadrilateral Mesh Generation Scheme from Background Triangular Mesh (삼각형 배경 요소를 이용한 새로운 사각형 요소망 생성법)

  • Kwon K.Y.;Park J.M.;Lee B.C.;Chae S.W.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.107-114
    • /
    • 2006
  • A new quadrilateral mesh generation technique from an existing triangle mesh is proposed in this paper. The proposed method is based on advancing front method and zero-thickness layer. Beginning with an initial triangular mesh, boundary triangular elements are removed and quadrilateral elements with zero thickness are generated. A quality of quadrilateral elements is improved during a mesh smoothing process. Until all initial triangular elements are removed, this procedure is repeated. Sample meshes are constructed to demonstrate the mesh generation capability of proposed algorithm.

Automatic Generation of Triangular Ginite Element Meshes on Three-Dimensional Surfaces (3차원 곡면에서 삼각형 유한요소망의 자동생성)

  • 채수원;손창현
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.224-233
    • /
    • 1996
  • An automatic mesh generation scheme with triangular finite elements on three-dimensional surfaces has been developed. The surface triangulation process is performed as follows. To begin, surfaces with key nodes are transformed to two-dimensional planes and the meshes with triangular elements are constructed in these planes. Finally, the constructed meshes are transformed back to the original 3D surfaces. For the mesh generation, an irregular mesh generation scheme is employed in which local mesh densities are assigned by the user along the boundaries of the analysis domain. For this purpose a looping algorithm combined with an advancing front technique using basic operators has been developed, in which the loops are recursively subdivided into subloops with the use of the best split lines and then the basic operators generate elements. Using the split lines, the original boundaries are split recursively until each loop contains a certain number of key nodes, and then using the basic operators such as type-1 and type-2, one or two triangular elements are generated at each operation. After the triangulation process has been completed for each meshing domain, the resulting meshes are finally improved by smoothing process. Sample meshes are presented to demonstrate the versatility of the algorithm.

  • PDF

Volume Calculation for Filling Up of Rubbish Using Stereo Camera and Uniform Mesh (스테레오 카메라와 균일 매시를 이용한 매립지의 환경감시를 위한 체적 계산 알고리즘)

  • Lee, Young-Dae;Cho, Sung-Youn;Kim, Kyung;Lee, Dong-Gyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.15-22
    • /
    • 2012
  • For the construction of safe and clear urban environment, it is necessary that we identify the rubbish waste volume and we know the accuracy volume. In this paper, we developed the algorithm which computes the waste volume using the stereo camera for enhancing the environment of waste repository. Using the stereo vision camera, we first computed the distortion parameters of stereo camera and then we obtained the points cloud of the object surface by measuring the target object. Regarding the points cloud as the input of the volume calculation algorithm, we obtained the waste volume of the target object. For this purpose, we suggested two volume calculation algorithm based on the uniform meshing method. The difference between the measured volume such as today's one and yesterday's one gives the reposit of waste volume. Using this approach, we can get the change of the waste volume repository by reading the volume reports weekly, monthly and yearly, so we can get quantitative statistics report of waste volume.

Dynamic Reconstruction Algorithm of 3D Volumetric Models (3D 볼류메트릭 모델의 동적 복원 알고리즘)

  • Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.207-215
    • /
    • 2022
  • The latest volumetric technology's high geometrical accuracy and realism ensure a high degree of correspondence between the real object and the captured 3D model. Nevertheless, since the 3D model obtained in this way constitutes a sequence as a completely independent 3D model between frames, the consistency of the model surface structure (geometry) is not guaranteed for every frame, and the density of vertices is very high. It can be seen that the interconnection node (Edge) becomes very complicated. 3D models created using this technology are inherently different from models created in movie or video game production pipelines and are not suitable for direct use in applications such as real-time rendering, animation and simulation, and compression. In contrast, our method achieves consistency in the quality of the volumetric 3D model sequence by linking re-meshing, which ensures high consistency of the 3D model surface structure between frames and the gradual deformation and texture transfer through correspondence and matching of non-rigid surfaces. And It maintains the consistency of volumetric 3D model sequence quality and provides post-processing automation.