• 제목/요약/키워드: Surface Generation

검색결과 2,394건 처리시간 0.03초

Deuterium ion irradiation impact on the current-carrying capacity of DI-BSCCO superconducting tape

  • Rajput, M.;Swami, H.L.;Kumar, R.;Bano, A.;Vala, S.;Abhangi, M.;Prasad, Upendra;Kumar, Rajesh;Srinivasan, R.
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2586-2591
    • /
    • 2022
  • In the present work, we have irradiated the DI-BSCCO superconducting tapes with the 100 keV deuterium ions to investigate the effect of ion irradiation on their critical current (Ic). The damage simulations are carried out using the binary collision approximation method to get the spatial distribution and depth profile of the damage events in the high temperature superconducting (HTS) tape. The point defects are formed near the surface of the HTS tape. These point defects change the vortex profile in the superconducting tape. Due to the long-range interaction of vortices with each other, the Ic of the tape degrades at the 77 K and self magnetic field. The radiation dose of 2.90 MGy degrades the 44% critical current of the tape. The results of the displacement per atom (dpa) and dose deposited by the deuterium ions are used to fit an empirical relation for predicting the degradation of the Ic of the tape. We include the dpa, dose and columnar defect terms produced by the incident particles in the empirical relation. The fitted empirical relation predicts that light ion irradiation degrades the Ic in the DI-BSCCO tape at the self field. This empirical relation can also be used in neutron irradiation to predict the lifetime of the DI-BSCCO tape. The change in the Ic of the DI-BSCCO tape due to deuterium irradiation is compared with the other second-generation HTS tape irradiated with energetic radiation.

승용형 농기계용 직진 자동조향장치 주행특성 연구 (Study on Traveling Characteristics of Straight Automatic Steering Devices for Drivable Agricultural Machinery)

  • 원진호;전진택;홍영기;양창주;김경철;권경도;김국환
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권4호
    • /
    • pp.19-28
    • /
    • 2022
  • This paper introduces an automatic steering system for straight traveling capable of being mounted on drivable agricultural machinery which user can handle it such as a tractor, a transplant, etc. The modular automatic steering device proposed in the paper is composed of RTK GNSS, IMU, HMI, hydraulic valve, and wheel sensor. The path generation method of the automatic steering system is obtained from two location information(latitude and longitude on each point) measured by GNSS in advance. From HMI, a straight path(AB line) can be created by connecting latitude and longitude on each point and the device makes the machine able to follow the path. During traveling along the reference path, it acquires the real time position data every sample time(0.1s), compares the reference with them and calculates the lateral deviation. The values of deviation are used to control the steering angle of the machine using hydraulic valve mounted on the axle of front wheel. In this paper, Pure Pursuit algorithm is applied used in autonomous vehicles frequently. For the analysis of traveling characteristics, field tests were executed about these conditions: velocity of 2, 3, 4km/h which is applied to general agricultural work and ground surface of solid(asphalt) and weak condition(soil) such as farmland. In the case of weak ground state, two experiments were executed about no-load(without work) and load(with work such as plowing). The maximum average deviations were presented 2.44cm, 7.32cm, and 11.34cm during traveling on three ground conditions : asphalt, soil without load and with load(plowing).

TBM 디스크커터의 마모량 실시간 계측을 위한 연구현황 (Introduction to Research Trend of Real-Time Measurement for Wear of TBM Disc Cutter)

  • 박민성;주민석;조민성;이준;김정주;정호영
    • 터널과지하공간
    • /
    • 제32권6호
    • /
    • pp.478-490
    • /
    • 2022
  • TBM의 주요 절삭도구인 디스크커터는 과다하게 마모되거나 손상된 경우 적절한 시기에 교체되어야 한다. 일반적으로 커터의 교체여부를 판단하기 위해서 작업자가 커터헤드 챔버의 내부로 접근하여 디스크 커터의 상태와 마모량을 계측하고 있다. 하지만 커터헤드(cutterhead) 챔버(chamber) 내부는 작업자에게 열악한 조건일 경우가 많아 작업자의 안전과 관련한 이슈가 있으며, 인력에 의해서 계측이 이루어짐에 따라 계측치의 오차도 발생하는 것으로 보고되고 있다. 이러한 한계점을 극복하고자 현재 해외에서는 디스크커터의 마모정도를 계측센서를 통해 굴착 중에 실시간으로 측정하기 위한 기술의 개발이 활발하게 이루어지고 있으며, 본 연구에서는 현재까지 해외의 문헌을 통해 보고되고 있는 TBM 디스크커터의 마모량 계측에 관한 연구현황에 대하여 소개하고자 하였다. 여러 형식의 센서가 디스크커터의 마모계측을 위해 활용되고 있으며, 향후 국내에서도 유사한 기술의 개발이 이루어지는 경우에 유용한 참고자료가 될 수 있을 것으로 판단된다.

비도금 보론강판 산화층 평가용 시편의 퀜칭속도 예측기법 연구 (A Study on Quenching Speed Prediction Method of Specimen for Evaluating the Oxide Layer of Uncoated Boron Steel Sheet)

  • 이지호;송정한;배기현
    • 소성∙가공
    • /
    • 제31권1호
    • /
    • pp.17-22
    • /
    • 2022
  • Hot stamping is widely used to manufacture structural parts to satisfy requirements of eco-friendly vehicles. Recently, hot forming technology using uncoated steel sheet is being studied to reduce cost and solve patent problems. In particular, research is focused on process technology capable of suppressing the generation of an oxide layer. To evaluate the oxide layer in the hot stamping process, Gleeble testing machine can be used to evaluate the oxide layer by controlling the temperature history and the atmosphere condition. At this time, since cooling by gas injection is impossible to protect the oxide layer on the surface of a specimen, research on a method for securing a quenching speed through natural cooling is required. This paper proposes a specimen shape design method to secure a target quenching speed through natural cooling when evaluating the oxide layer of an un-coated boron steel sheet by Gleeble test. For the evaluation of the oxide layer of the un-coated steel sheet through the Gleeble test, dog-bone and rectangular type specimens were used. In consideration of the hot stamping process, the temperature control conditions for the Gleeble test were set and the quenching speed according to the specimen shape design was measured. Finally, the quenching speed sensitivity according to shape parameter was analyzed through regression analysis. A quenching speed prediction equation was then constructed according to the shape of the specimen. The constructed quenching speed prediction equation can be used as a specimen design guideline to secure a target quenching speed when evaluating the oxide layer of an un-coated boron steel sheet by the Gleeble test.

Engineering characteristics of dune sand-fine marble waste mixtures

  • Qureshi, Mohsin U.;Mahmood, Zafar;Farooq, Qazi U.;Qureshi, Qadir B.I.L.;Al-Handasi, Hajar;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • 제28권6호
    • /
    • pp.547-557
    • /
    • 2022
  • Dune sands are poorly graded collapsible soils lacking fines. This experimental study explored the technical feasibility of sustainable invigoration of fine waste materials to improve the geotechnical properties of dune sand. The fine waste considered in this study is fine marble waste. The fine waste powder was mixed with dune sand at different contents (5, 10,15, 20, 25, 50%), where the gradation, void ratio, compaction, and shear strength characteristics were assessed for each fine marble waste -dune sand blend. The geotechnical properties of the dune sand-fine marble waste mix delineated in this study reveal the enhancement in compaction and gradation characteristics of dune sand. According to the results, the binary mixture of dune sand with 20% of fine marble waste gives the highest maximum dry density and results in shear strength improvement. In addition, a numerical study is conducted for the practical application of the binary mix in the field and tested for an isolated shallow foundation. The elemental analysis of the fine marble waste confirms that the material is non-contaminated and can be employed for engineering applications. Furthermore, the numerical study elucidated that the shallow surface replacement of the site with the dune sand mixed with 20% fine marble waste gives optimal performance in terms of stress generation and settlement behavior of an isolated footing. For a sustainable mechanical performance of the fine marble waste mixed sand, an optimum dose of 20% fine marble waste is recommended, and some correlations are proposed. Thus, for improving dune sand's geotechnical characteristics, the addition of fine marble waste to the dune sand is an environment-friendly solution.

복숭아 선별작업장의 미세먼지의 발생특성 모니터링 (Monitoring of Dust Concentration Generated during Peach Sorting Operations)

  • 서효재;서일환
    • 생물환경조절학회지
    • /
    • 제31권3호
    • /
    • pp.237-245
    • /
    • 2022
  • 복숭아는 대표적인 여름 과일이자 알레르기를 유발하는 식품으로 밀폐되고 집약적인 생산환경으로 인해 시설 내 유기분진, 농약, 복숭아털이 발생하기 때문에, 열악한 작업환경으로 인한 작업자들이 어려움을 많이 겪고 있다. 본 연구에서는 복숭아 선별작업장에서 발생하는 미세먼지를 위치별, 작업별, 입경별로 모니터링함으로써 저감 및 대책 마련을 위한 기초자료를 확보하고자 하였다. 미세먼지 모니터링 결과 지역별로는 선별과정에서 미세먼지의 발생이 높은 것으로 나타났으며, 주로 기계적인 과정을 통하여 발생하는 10㎛ 이상의 미세먼지로 나타났다. 본 연구를 바탕으로 향후 작업환경의 개선을 위해서 공정 중 미세먼지가 주로 발생하는 지역 및 미세먼지의 물리적 특성을 고려하여 저감시설 및 개인보호구의 착용이 요구된다.

Assessment of seismic stability of finite slope in c-ϕ soils - a plasticity approach

  • Shibsankar, Nandi;G., Santhoshkumar ;Priyanka, Ghosh
    • Geomechanics and Engineering
    • /
    • 제31권5호
    • /
    • pp.439-452
    • /
    • 2022
  • A forecast of slope behavior during catastrophic events, such as earthquakes is crucial to recognize the risk of slope failure. This paper endeavors to eliminate the significant supposition of predefined slip surfaces in the slope stability analysis, which questions the relevance of simple conventional methods under seismic conditions. To overcome such limitations, a methodology dependent on the slip line hypothesis, which permits an automatic generation of slip surfaces, is embraced to trace the extreme slope face under static and seismic conditions. The effect of earthquakes is considered using the pseudo-static approach. The current outcomes developed from a parametric study endorse a non-linear slope surface as the extreme profile, which is in accordance with the geomorphological aspect of slopes. The proposed methodology is compared with the finite element limit analysis to ensure credibility. Through the design charts obtained from the current investigation, the stability of slopes can be assessed under seismic conditions. It can be observed that the extreme slope profile demands a flat configuration to endure the condition of the limiting equilibrium at a higher level of seismicity. However, a concurrent enhancement in the shear strength of the slope medium suppresses this tendency by offering greater resistance to the seismic inertial forces induced in the medium. Unlike the traditional linear slopes, the extreme slope profiles mostly exhibit a steeper layout over a significant part of the slope height, thus ensuring a more optimized solution to the slope stability problem. Further, the susceptibility of the Longnan slope failure in the Huining-Wudu seismic belt is predicted using the current plasticity approach, which is found to be in close agreement with a case study reported in the literature. Finally, the concept of equivalent single or multi-tiered planar slopes is explored through an example problem, which exhibits the appropriateness of the proposed non-linear slope geometry under actual field conditions.

Preparation of High-Solid Microfibrillated Cellulose from Gelidium amansii and Characterization of Its Physiochemical and Biological Properties

  • Min Jeong Kim;Nur Istianah;Bo Ram So;Hye Jee Kang;Min Jeong Woo;Su Jin Park;Hyun Jeong Kim;Young Hoon Jung;Sung Keun Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권12호
    • /
    • pp.1589-1598
    • /
    • 2022
  • Microfibrillated cellulose (MFC) is a valuable material with wide industrial applications, particularly for the food and cosmetics industries, owing to its excellent physiochemical properties. Here, we prepared high-solid microfibrillated cellulose (HMFC) from the centrifugation of Gelidium amansiiderived MFC right after fibrillation. Dispersion properties, morphology, and structural changes were monitored during processing. HMFC has a five-fold higher solid concentration than MFC without significant changes to dispersion properties. SEM images and FTIR spectra of HMFC revealed a stable surface and structure against centrifugal forces. HMFC exhibited 2,2'-azino-bis (3-ethylbenzothiazoline6-sulfonic acid) (ABTS) radical scavenging activity, although it could not scavenge 2,2-diphenyl-1- picrylhydrazyl (DPPH). Moreover, HMFC inhibited the generation of LPS-induced excessive nitrite and radial oxygen species in murine macrophage RAW264.7 cells. Additionally, HMFC suppressed LPS-induced Keap-1 expression in the cytosol but did not alter iNOS expression. HMFC also attenuated the UVB-induced phosphorylation of p38, c-Jun N-terminal kinase (JNK) 1/2, and extracellular-signal-regulated kinase (ERK) 1/2, as well as the phosphorylation of c-Jun in the immortalized human skin keratinocyte HaCaT cells. Therefore, the application of centrifugation is suitable for producing high-solid MFC as a candidate material for anti-inflammatory and antioxidative marine cosmeceuticals.

Development of Microfluidic Radioimmunoassay Platform for High-throughput Analysis with Reduced Radioactive Waste

  • Jin-Hee Kim;So-Young Lee;Seung-Kon Lee
    • 대한방사성의약품학회지
    • /
    • 제8권2호
    • /
    • pp.95-101
    • /
    • 2022
  • Microfluidic radioimmunoassay (RIA) platform called µ-RIA spends less reagent and shorter reaction time for the analysis compared to the conventional tube-based radioimmunoassay. This study reported the design of µ-RIA chips optimized for the gamma counter which could measure the small samples of radioactive materials automatically. Compared with the previous study, the µ-RIA chips developed in this study were designed to be compatible with conventional RIA test tubes. And, the automatic gamma counter could detect radioactivity from the 125I labeled anti-PSA attached to the chips. Effects of the multi-layer microchannels and two-phase flow in the µ-RIA chips were investigated in this study. The measured radioactivity from the 125I labeled anti-PSA was linearly proportional to the number of stacked chips, representing that the radioactivity in µ-RIA platform could be amplified by designing the chips with multi-layers. In addition, we designed µ-RIA chip to generate liquid-gas plug flow inside the microfluidic channel. The plug flow can promote binding of the biomolecules onto the microfluidic channel surface with recirculation in the liquid phase. The ratio of liquid slug and air slug length was 1 : 1 when the 125I labeled anti-PSA and the air were injected at 1 and 35 µL/min, respectively, exhibiting 1.6 times higher biomolecule attachment compared to the microfluidic chip without the air injection. This experimental result indicated that the biomolecular reaction was improved by generating liquid-gas slugs inside the microfluidic channel. In this study, we presented a novel µ-RIA chips that is compatible with the conventional gamma counter with automated sampler. Therefore, high-throughput radioimmunoassay can be carried out by the automatic measurement of radioactivity with reduced radiowaste generation. We expect the µ-RIA platform can successfully replace conventional tube-based radioimmunoassay in the future.

Thickness measurements of a Cr coating deposited on Zr-Nb alloy plates using an ECT pancake sensor

  • Jeong Won Park;Bonggyu Ji;Daegyun Ko;Hun Jang;Wonjae Choi
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3260-3267
    • /
    • 2023
  • Zr-Nb alloy have been widely used as fuel rods in nuclear power plants. However, from the Fukushima nuclear accident, the weakness of the rod was revealed under harsh conditions, and research on the safety of these types of rods was conducted after the disaster. The method of depositing chromium onto the existing Zr-Nb alloy fuel rods is being considered as a means by which to compensate for the weakness of Zr-Nb alloy rods because chromium is strong against oxidation at high temperatures and has high strength. In order to secure these advantages, it is important to maintain the Cr thickness of the rods and properly inspect the rods before and during their use in power generation. Eddy current testing is a typical means of evaluating the thickness of thin metals and detecting surface defects. Depending on the size and shape of the inspected object, various eddy current sensors can be applied. In particular, because pancake sensors can be manufactured in very small sizes, they can be used for inspections even in narrow spaces, such as a nuclear fuel assembly. In this study, an eddy current technique was developed to confirm the feasibility of Cr coating thickness evaluations. After determining the design parameters of the pancake sensor by means of a FEM simulation, a FPCB pancake sensor was manufactured and the optimal frequency was selected by measuring minute changes in the Cr-coating thickness using the developed sensor.