• Title/Summary/Keyword: Surface Functionalization

Search Result 128, Processing Time 0.032 seconds

Functionalization of PLLA Sheet Using Gamma-ray Irradiation (감마선 이용 친수성 PLLA 시트 기능화 및 특성 평가)

  • Gwon, Hui-Jeong;Jeong, Jin-Oh;Jeong, Sung In;Park, Jong-Seok;Lim, Youn-Mook
    • Journal of Radiation Industry
    • /
    • v.12 no.4
    • /
    • pp.343-348
    • /
    • 2018
  • Preliminary study was perfomed to develop a biocompatible filter material using radiation energy. Electrosppined PLLA nano sheets were surface-modificated with hydrophilic groups(acrylic group) by using radiation. The physico-chemical and morphological characteristics of modified PLLA sheets were measured by ATR, SEM, contact angle, and hydrophilic (acryl group) introduction rate (TBO). As a result, there was no morphological(fiber structure) structure change due to radiation, and it was confirmed that an acrylic group was successfully introduced onto PLLA fiber sheet by radiation.

Development of Highly Durable Retroreflective Coating with Gravure Chemical Printing (그라비아 케미칼 프린팅 기술을 이용한 고내구성 재귀반사 코팅 직물 제조연구)

  • Sung Yong Yang;Bo Min Kim;Hyeji Park;Gyu Hwan Kim;Jaehyeung Park
    • Textile Coloration and Finishing
    • /
    • v.35 no.2
    • /
    • pp.98-106
    • /
    • 2023
  • The recent surge in night walkers and pedestrian traffic accidents has led to an increased interest in retro-reflection-based products, leading to several studies on retro-reflection. Nonetheless, achieving high durability and dispersibility of retro-reflective glass beads in viscous polyurethane coating resin remains challenging. To address this issue, this study conduct to functionalize the surface of glass beads for covalent conjugation to coating resin to enhance their dispersibility and durability in the coating resin. The study evaluated the dispersibility, chemical composition, and retro-reflection properties of the functionalized glass beads and coating resin. The results showed that the functionalized glass beads conjugated to the polyurethane coating resin and exhibited excellent dispersibility, high durability, and maintained retro-reflection efficiency.

Enhancement of Sensitivity in Interferometric Biosensing by Using a New Biolinker and Prebinding Antibody

  • Park, Jae-Sook;Lim, Sung-Hyun;Sim, Sang-Jun;Chae, Hee-Yeop;Yoon, Hyun-C.;Yang, Sang-Sik;Kim, Byung-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1968-1976
    • /
    • 2006
  • Recombinant E. coli ACV 1003 (recA:: lacZ) was used to measure low concentrations of DNA-damaging chemicals, which produce $\beta$-galactosidase via an SOS regulon system. Very low $\beta$-galactosidase activities of less than 0.01 unit/ml, $\beta$-galactosidase produced through an SOS response corresponding to the 10 ng/ml (ppb) of DNA damaging chemicals in the environment, can be rapidly determined by using an alternative interferometric biosensor with optically flat thin films of porous silicon rather than by the conventional time-consuming Miller's enzyme assay as well as the ELISA method. fu order to enhance the sensitivity in the interferometry, it needs to obtain more uniform distribution and higher biolinking efficiency, whereas interferometric sensing is rapid, cheap, and advantageous in high throughput by using a multiple-well-type chip. In this study, pore size adjusted to 60 nm for the target enzyme $\beta$-galactosidase to be bound on both walls of a Si pore and a calyx crown derivative was apllied as a more efficient biolinker. Furthermore, anti-$\beta$-galactosidase was previously functionalized with the biolinker for the target $\beta$-galactosidase to be specifically bound. When anti-$\beta$-galactosidase was bound to the calyx-crown derivative-linked surface, the effective optical thickness was found to be three times as high as that obtained without using anti-$\beta$-galactosidase. The resolution obtained was very similar to that afforded by the time-consuming ELISA method; however, the reproducibility was still unsatisfactory, below 1 unit $\beta$-galactosidase/ml, owing to the microscopic non-uniform distribution of the pores in the etched silicon surface.

Plant responses to nano and micro structured carbon allotropes: Water imbibition by maize seeds upon exposure to multiwalled carbon nanotubes and activated carbon

  • Dasgupta-Schubert, N.;Tiwari, D.K.;Francis, E. Reyes;Martinez Torres, P.;Villasenor Cendejas, L.M.;Lara Romero, J.;Villasenor Mora, C.
    • Advances in nano research
    • /
    • v.5 no.3
    • /
    • pp.245-251
    • /
    • 2017
  • Multiwalled carbon-nanotubes (MWCNT) and micro-structured carbon, such as biochar or activated carbon (AC), have been seen to significantly increase the growth indices of certain plant species such as maize (Zea mays L.). Seed imbibition is the stage where environmental factors that affect water transport across the seed coat barrier, make a large impact. This work explores the effect on water imbibition by maize seeds when the aqueous environment surrounding the seed is diluted by small concentrations (10 and 20 mg/l) of pristine MWCNT (p-MWCNT), carboxylate functionalized MWCNT (COO-MWCNT) and AC. The degree of sensitivity of the process to (i) large structural changes is seen by utilizing the nano (the MWCNT) and the micro (the AC) allotropic forms of carbon; (ii) to small changes in the purity and morphology of the p-MWCNT by utilizing 95% pure and 99% pure p-MWCNTs of slightly differing morphologies; and (iii) to MWCNT functionalization by using highly pure (97%) COO-MWCNT. Water imbibition was monitored over a 15 hour period by Near Infrared Thermography (NIRT) and also by seed weighing. Seed surface topography was seen by SEM imaging. Analysis of the NIRT images suggests rapid seed surface topological changes with the quantity of water imbibed. While further work is necessary to arrive at a conclusive answer, this work shows that the imbibition phase of the maize seed is sensitive to the presence of MWCNT even to small differences in the purity of the p-MWCNT and to small differences in the physicochemical properties of the medium caused by the hydrophilic COO-MWCNT.

Synthesis of High Functionalized Anion Exchange Fibers Using Hybrid Polyolefine by $\gamma-Ray$ Mutual Radiation (방사선 동시조사법을 이용한 고관능성 Hybrid Polyolefine 음이온교환섬유의 합성)

  • Cho In-Hee;Kwak Noh-Seok;Kang Phil-Hyun;Nho Young-Chang;Hwang Taek-Sung
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.217-223
    • /
    • 2006
  • Ion exchange fibers, high functionalized onto hybrid polyolefine fiber's surface, were synthesized by $\gamma-ray$ mutual radiation. Degree of grafting (DG) of copolymer increased with increasing GMA monomer concentration and the maximum rate of DG was 355% at 50 GMA. The graft reaction occurred in polar solvent and DG was 190% maximum value in $1.0\times10^{-3}$ Mohr's salt and 0.1 M sulfuric acid, respectively. The amination for graft copolymers varied depending on amine reagents, and the reactivity for copolymers was highest for methylamine, and that of triethylamine lowest. It was shown that water uptake and ion exchange capacities increased with increase in the rate of amination while surface area decreased rapidly as proceeding for graft reaction and amination.

Study on Morphology Control of Polymeric Membrane with Clathrochelate Metal Complex (Clathrochelate계 금속 착물을 이용한 고분자 멤브레인 구조 제어)

  • Kim, Nowon;Jung, Boram
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.472-483
    • /
    • 2014
  • This study is preparation of microporous membranes by using macrocyclic metal ion complexes and extended cage complexes. It is a more favorable way to existing methods because polymer and metal ion-ligand complex system provides a fine control over the phase transition behavior. Chemical functionalization of the polar surface can be obtained. Metal-templated condensation of cyclohexanedione dioxime, hydroxyphenylboronic acid in the presence of metal salts proceeds cleanly in methanol to furnish the metal clathrochelate complexes. Organic/inorganic hybrid membranes were prepared with polyethersulfone (PES), polyvinylpyrrolidone (PVP), ethyleneglycol butyl ether (BE), metal clathrochelate s and DMF by using nonsolvent induced phase inversion method. The structure of membranes was characterized with scanning electron microscopy (SEM) and microflow permporometer. The addition of Fe(II) clathrochelate complex with p-hydroxyphenyl group leads to changes of membrane morphology such as narrow mean pore size distribution, increase of surface pore density and decrease of the largest pore size.

NO2 Sensing Properties of β-Bi2O3 Nanowires Sensor Coated with Pd Nanoparticles (Pd 나노입자가 코팅된 β-Bi2O3 나노와이어의 NO2 검출 특성)

  • Park, Sunghoon;Kang, Wooseung
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.303-308
    • /
    • 2015
  • Pd-functionalized ${\beta}-Bi_2O_3$ nanowires are synthesized by thermal evaporation of Bi powder using VLS mechanism followed by Pd coating and annealing. In this study, sensing properties of Pd-functionalized ${\beta}-Bi_2O_3$ nanowires sensor to selected concentrations of $NO_2$ gas were examined. Scanning electron microscopy showed that the nanowires with diameters in a range of 100 - 200 nm and lengths of up to a few tens of micrometers. Transmission electron microscopy and X-ray diffraction confirmed that the products corresponded to the nanowires of ${\beta}-Bi_2O_3$ crystals and Pd nanoparticles. Pd-functionalized ${\beta}-Bi_2O_3$ nanowires sensor showed an enhanced sensing performance to $NO_2$ gas compared to as-synthesized ${\beta}-Bi_2O_3$ nanowires sensor. As synthesized and Pd-functionalized ${\beta}-Bi_2O_3$ nanowire sensors showed responses of 178% - 338% and 196% - 535% at $300^{\circ}C$, respectively, to 0.05 - 2 ppm $NO_2$. In addition, the underlying mechanism of the enhancement of the sensing properties of ${\beta}-Bi_2O_3$ nanowires by Pd-functionalization is discussed.

Functional Nanochannels to Control Ion Transportation with Monomolecule Selectivity (단일 이온 인식형 이송 제어 기능성 나노채널 기술)

  • Kim, Jeong Hwan;Lee, Eung-Sug;Whang, Kyung-Hyun;Yoo, Yeong-Eun;Yoon, Jae-Sung
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.4
    • /
    • pp.249-255
    • /
    • 2015
  • Functional nanochannels were fabricated in order to control selective ion transportation with high permeability and low energy consumption. In this research, nanochannel platform fabrication process and surface functionalization process were developed. In addition, selective ion transportation and concentration measurement system was also set-up. By using fabricated multilayer metal membrane with electrical bias, 95% of ion ($Cl^-$) was blocked. This developed process is new-conceptional membrane fabrication technology and is expected to be applied to next-generation water purification/desalination, portable artifical kidney, and artificial sense organ.

Improvement of Catalyst Supporting Characteristic on MWCNTs with Different Thermal Treatment for PEMFC (탄소나노튜브의 열처리에 따른 고분자전해질연료전지용 촉매의 표면처리 및 담지특성 향상)

  • Kwon, Min-Kii;Jung, Ju-Hae;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.4
    • /
    • pp.245-252
    • /
    • 2011
  • In this study, carbon nanotubes were used as supporter to get high dispersion and high loading of Pt for PEMFC. Thermal oxidation method was applied to carbon nanotubes surface treatment. FT-IR and XPS were used to measure the effect of temperature on functional group. The increased concentration of functional groups was confirmed by XPS analysis, and increased Pt loading and dispersion was also observed by TGA and TEM analysis with increased temperature. Thermal behavior of oxidation is closely related to the manufacture of highly dispersed Pt/MWCNTs. Pt/MWCNTs treatment temperature at $90^{\circ}C$, showed high dispersion and high loading of Pt, and also showed good cell performance.

CO2 Adsorption in Metal-organic Frameworks (금속유기구조체를 이용한 이산화탄소 흡착 연구)

  • Kim, Jun;Kim, Hee-Young;Ahn, Wha-Seung
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.171-180
    • /
    • 2013
  • Metal organic frameworks (MOFs) are a class of crystalline organic-inorganic hybrid compounds formed by coordination of metal clusters or ions with organic linkers. MOFs have recently attracted intense research interest due to their permanent porous structures, large surface areas and pore volume, high-dispersed metal species, and potential applications in gas adsorption, separation, and catalysis. $CO_2$ adsorption in MOFs has been investigated in two areas of $CO_2$ storage at high pressures and $CO_2$ adsorption at atmospheric pressure conditions. In this short review, $CO_2$ adsorption/separation results using MOFs conducted in our laboratory was explained in terms of four contributing effects; (1) coordinatively unsaturated open metal sites, (2) functionalization, (3) interpenetration/catenation, and (4) ion-exchange. Zeolitic imidazolate frameworks (ZIFs) and covalent organic frameworks (COFs) were also considered as a candidate material.