DOI QR코드

DOI QR Code

Improvement of Catalyst Supporting Characteristic on MWCNTs with Different Thermal Treatment for PEMFC

탄소나노튜브의 열처리에 따른 고분자전해질연료전지용 촉매의 표면처리 및 담지특성 향상

  • Kwon, Min-Kii (School of Chemical Engineering & Bioengineering, University of Ulsan) ;
  • Jung, Ju-Hae (School of Chemical Engineering & Bioengineering, University of Ulsan) ;
  • Kim, Jun-Bom (School of Chemical Engineering & Bioengineering, University of Ulsan)
  • 권민기 (울산대학교 생명화학공학부) ;
  • 정주해 (울산대학교 생명화학공학부) ;
  • 김준범 (울산대학교 생명화학공학부)
  • Received : 2011.11.17
  • Accepted : 2011.11.28
  • Published : 2011.11.30

Abstract

In this study, carbon nanotubes were used as supporter to get high dispersion and high loading of Pt for PEMFC. Thermal oxidation method was applied to carbon nanotubes surface treatment. FT-IR and XPS were used to measure the effect of temperature on functional group. The increased concentration of functional groups was confirmed by XPS analysis, and increased Pt loading and dispersion was also observed by TGA and TEM analysis with increased temperature. Thermal behavior of oxidation is closely related to the manufacture of highly dispersed Pt/MWCNTs. Pt/MWCNTs treatment temperature at $90^{\circ}C$, showed high dispersion and high loading of Pt, and also showed good cell performance.

본 연구에서는 탄소나노튜브를 담지체로 사용하여 연료전지용 백금(Pt) 촉매의 고분산, 고담지를 목적으로 하였다. 탄소나노튜브의 표면처리는 열적산화방식으로 전처리하였다. 25, 50, 90 및 $110^{\circ}C$에서 열처리를 하였을 경우, 온도변화에 따른 작용기의 영향을 FT-IR, XPS를 통해 분석하였다. XPS를 통해 전처리의 온도가 증가할수록 작용기의 농도가 증가하는 것을 확인 하였으며, TGA와 TEM을 통해 Pt의 담지량과 분산도 또한 증가한 것을 확인하였다. 산화과정에서 열적거동은 고담지 Pt 촉매의 제조와 밀접한 관련이 있으며, 본 연구에서 제조된 촉매의 고분산, 고담지에 적절한 합성 온도는 $90^{\circ}C$로 관찰되었으며 단위전지에서 가장 좋은 성능을 나타내었다.

Keywords

References

  1. K. Kordesch and G. Simader, "Fuel Cells and their Applications", VCH, Wiley, New York (1996).
  2. C. M. Lai, J. C. Lin, F. P. Ting, S. D. Chyou, and K. L. Hsueh, 'Contribution of Nafion loading to the activity of catalysts and the performance of PEMFC' Int. J. Hydrogen Energy, 33, 4132 (2008). https://doi.org/10.1016/j.ijhydene.2008.05.074
  3. R. R. Passos, V. A. Paganin, and E. A. Ticianelli, 'Studies of the performance of PEM fuel cell cathodes with the catalyst layer directly applied on Nafion membranes' Electrochim. Acta, 51, 5239 (2006). https://doi.org/10.1016/j.electacta.2006.01.044
  4. S. Gottesfeld and M. S. Wilson, New Trends Electrochem. Technol., 1, 487 (2000).
  5. R. Hockaday and C. Navas, 'Micro-Fuel $Cells^{TM}$ for portable electronics' Fuel Cells Bull., 10, 9 (1999).
  6. W. Li, C. Liang, W. Zhou, J. Qiu, H. Li, G. Sun, and Q. Xin 'Homogeneous and controllable Pt particles deposited on multi-wall carbon nanotubes as cathode catalyst for direct methanol fuel Cells' Carbon, 42, 436 (2004). https://doi.org/10.1016/j.carbon.2003.10.033
  7. W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, G. Sun, and Q. Xin, 'Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell' Carbon, 40, 787 (2002). https://doi.org/10.1016/S0008-6223(01)00136-1
  8. W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, and Q. Xin, 'Preparation and characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells' J. Phys. Chem. Bulletin, 107, 6292 (2003). https://doi.org/10.1021/jp022505c
  9. K. I. Han, J. S. Lee, S. O. Park, S. W. Lee, Y. W. Park, and H. S. Kim, 'Studies on the anode catalysts of carbon nanotube for DMFC' Electrochim. Acta, 50, 791 (2004). https://doi.org/10.1016/j.electacta.2004.01.115
  10. R. Yu, L. Chen, Q. Liu, J. Lin, K. Tan, and S. Ng et al., 'Platinum Deposition on Carbon Nanotubes via Chemical Modication' Chem. Mater., 10, 718 (1998). https://doi.org/10.1021/cm970364z
  11. V. Parry, G. Berthome, J. C. Joud, O. Lemaire, and A. A. Franco, 'XPS investigations of the proton exchange membrane fuel cell active layers aging: Characterization of the mitigating role of an anodic CO contamination on cathode degradation' J. Power sources, 196, 2530 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.027
  12. R. V. Hull, L. Li, Y. Xing, and C. C. Chusuei, 'Pt Nanoparticle Binding on Functionalized Multiwalled Carbon Nanotubes' Chem. Mater., 18, 1780 (2006). https://doi.org/10.1021/cm0518978
  13. R. Yudianti, L. Indrarti, and H. Onggo, 'Thermal Behavior of Purified Multi Walled Carbon Nanotube' J. Applied Sciences, 10, 1978 (2010). https://doi.org/10.3923/jas.2010.1978.1982
  14. C. C. Chien and K. T. Jeng, 'Effective preparation of carbon nanotube-supported Pt-Ru electrocatalysts' Materials Chemistry and Physics, 99, 80 (2006). https://doi.org/10.1016/j.matchemphys.2005.09.080
  15. D. Q. Yang, B. Hennequin, and E. Sacher, 'XPS Demonstration of $\pi-\pi$ Interaction between Benzyl Mercaptan and Multiwalled Carbon Nanotubes and Their Use in the Adhesion of Pt Nanoparticles' Chem. Mater., 18, 5033 (2006). https://doi.org/10.1021/cm061256s
  16. H. S. Oh, K. H. Kim, Y. J. Ko, and H. S. Kim, 'Effect of chemical oxidation of CNFs on the electrochemical carbon corrosion in polymer electrolyte membrane fuel cells' Int. J. Hydrogen Energy, 33, 701 (2010).
  17. M. S. A. Rahaman, A. F. Ismail, and A. Mustafa, 'A review of heat treatment on polyacrylonitrile fiber' Polym. Degrad. Stabil., 92, 1421 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.03.023
  18. S. Dalton, F. Heatley, and P. M. Budd, 'Thermal stabilization of polyacrylonitrile bres' Polymer, 40, 5531 (1999). https://doi.org/10.1016/S0032-3861(98)00778-2
  19. H. J. Choi, H. T. Bae, J. K. Lee, B. C. Na, M. J. McNallan, and D.-S. Lim, 'Sliding wear of silicon carbide modified by etching with chlorine at various temperatures' Wear, 266, 214 (2009). https://doi.org/10.1016/j.wear.2008.06.021
  20. N. Ikeo, Y. Iijima, N. Niimura, M. Sigematsu, T. Tazawa, S. Matsumoto, K. Kojima, and Y. Nagasawa, "Handbook of X-ray Photoelectron Spectroscopy", JEOL, Tokyo (1991).

Cited by

  1. Hybrid electrode effects on polymer electrolyte membrane fuel cells vol.39, pp.2, 2014, https://doi.org/10.1016/j.ijhydene.2013.10.142