• Title/Summary/Keyword: Surface Exploration

Search Result 541, Processing Time 0.039 seconds

Experimental study on the relaxation zone depending on the width and distance of the weak zone existing ahead of tunnel face (터널 굴진면 전방에 위치한 연약대 폭과 이격거리에 따른 이완영역에 대한 실험적 연구)

  • Ham, Hyeon Su;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.855-867
    • /
    • 2018
  • When a weak zone exists ahead of tunnel face, the stress in the adjacent area would increase due to the longitudinal arching effect and the stability of the tunnel is affected. Therefore, it is critical to prepare a countermeasure through the investigation of the frontal weakness zone of the excavated face. Although there are several researches to predict the existence of weak zone ahead of tunnel face, such as geophysical exploration, numerical analysis and tunnel support, lack of studies on the relaxation zone depending on the width or distance from the vulnerable area. In this study, the impact of the weak zone on the formation of the relaxation zone was investigated. For this purpose, a series of laboratory test were carried out varying the width of the weak zone and the separation distance between tunnel face and weak zone. In the model test, sand with a water content of 3.8% was used to form a model ground. The model weak zone was constructed with dry sand curtains. The tunnel face was adjusted to allow a sequential excavation of upper and lower half part. load cells were installed on the bottom of the foundation and the tunnel face and measuring instruments for displacement were installed on the surface of the model ground to measure the vertical stress and surface displacements due to tunnel excavation respectively. The test results show that the width of weak zone did not affect the ground settlement while the ground subsidence drastically increased within 0.25D. The vertical stress and horizontal stress increased from 0.5D or less. In addition, the longitudinal arching effect is likely within the 1.0D zone ahead of the tunnel face, which may reduce the vertical stress in the ground following tunneling direction.

Exploration of optimum conditions for production of saccharogenic mixed grain beverages and assessment of anti-diabetic activity (잡곡당화음료 제조 최적 조건 탐색 및 항당뇨 활성 평가)

  • Lee, Jae Sung;Kang, Yun Hwan;Kim, Kyoung Kon;Yun, Yeong Kyeong;Lim, Jun Gu;Kim, Tae Woo;Kim, Dae Jung;Won, Sang Yeon;Bae, Moo Hoan;Choi, Han Seok;Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.47 no.1
    • /
    • pp.12-22
    • /
    • 2014
  • Purpose: This study was conducted to establish the production conditions through optimization of the production process of beverages using Aspergillus oryzae CF1001, and to analyze volatile compounds and antidiabetic activity. Methods: The optimum condition was selected using the response surface methodology (RSM), through a regression analysis with the following independent variables gelatinization temperature (GT, $X_1$), saccharogenic time (ST, $X_2$), and dependent variable; ${\Delta}E$ value (y). The condition with the lowest ${\Delta}E$ value occurred with combined 45 min ST and $50^{\circ}C$ GT. The volatile compounds were analyzed quantitatively by GC-MS. Results: Assessment of antidiabetic activity of saccharogenic mixed grain beverage (SMGB) was determined by measurement of ${\alpha}$-glucosidase inhibition activity, and glucose uptake activity and glucose metabolic protein expression by reverse transcriptase polymerase chain reaction (RT-PCR) and western blot analysis. Results of volatile compounds analysis, 62 kinds of volatile compounds were detected in SMGB. Palmitic acid (9.534% ratio), benzaldehyde (8.948% ratio), benzyl ethyl ether (8.792% ratio), ethyl alcohol (8.35% ratio), and 2-amyl furan (4.826% ratio) were abundant in SMGB. We confirmed that ${\alpha}$-glucosidase inhibition activity, glucose uptake activity, and glucose-metabolic proteins were upregulated by SMGB treatment with concentration dependent manner. Conclusion: Saccharogenic mixed grain beverage (SMGB) showed potential antidiabetic activity. Further studies will be needed in order to improve the taste and functionality of SMGB.

Development of System for Real-Time Object Recognition and Matching using Deep Learning at Simulated Lunar Surface Environment (딥러닝 기반 달 표면 모사 환경 실시간 객체 인식 및 매칭 시스템 개발)

  • Jong-Ho Na;Jun-Ho Gong;Su-Deuk Lee;Hyu-Soung Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.281-298
    • /
    • 2023
  • Continuous research efforts are being devoted to unmanned mobile platforms for lunar exploration. There is an ongoing demand for real-time information processing to accurately determine the positioning and mapping of areas of interest on the lunar surface. To apply deep learning processing and analysis techniques to practical rovers, research on software integration and optimization is imperative. In this study, a foundational investigation has been conducted on real-time analysis of virtual lunar base construction site images, aimed at automatically quantifying spatial information of key objects. This study involved transitioning from an existing region-based object recognition algorithm to a boundary box-based algorithm, thus enhancing object recognition accuracy and inference speed. To facilitate extensive data-based object matching training, the Batch Hard Triplet Mining technique was introduced, and research was conducted to optimize both training and inference processes. Furthermore, an improved software system for object recognition and identical object matching was integrated, accompanied by the development of visualization software for the automatic matching of identical objects within input images. Leveraging satellite simulative captured video data for training objects and moving object-captured video data for inference, training and inference for identical object matching were successfully executed. The outcomes of this research suggest the feasibility of implementing 3D spatial information based on continuous-capture video data of mobile platforms and utilizing it for positioning objects within regions of interest. As a result, these findings are expected to contribute to the integration of an automated on-site system for video-based construction monitoring and control of significant target objects within future lunar base construction sites.

The Liability for Space Activity of Launching State of Space Object and Improvement of Korea's Space Policy (우주물체 발사국의 우주활동에 대한 책임과 우리나라 우주정책의 개선방향)

  • Lee, Kang-Bin
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.28 no.2
    • /
    • pp.295-347
    • /
    • 2013
  • Korea launched the science satellite by the first launch vehicle Naro-ho(KSLV-1) at the Naro Space Center located at Oinarodo, Cohenggun Jellanamdo in August, 2009 and October, 2010. However, the first and second launch failed. At last, on January 30, 2013 the third launch of the launch vehicle Naro-ho has successfully launched and the Naro science satellite penetrated into the space orbit. Owing to the succeed of the launch of Naro-ho, Korea joined the space club by the eleventh turn following the United States, Russia, Japan and China. The United Nations adopted the Outer Space Treaty of 1967, the Rescue Agreement of 1968, the Liability Convention of 1972, the Regislation Convention of 1976, and Moon Agreement of 1979. Korea ratified the above space-related treaties except the Moon Agreement. Such space-related treaties regulate the international liability for the space activity by the launching state of the space object. Especially the Outer Space Treaty regulates the principle concerning the state's liability for the space activity. Each State Party to the Treaty that launches or procures the launching of an object into outer space is internationally liable for damage to another State Party or to its natural or judicial persons by such object or its component parts on the earth, in air space or in outer space. Under the Liability Convention, a launching state shall be absolutely liable to pay compensation for damage caused by its space object on the surface of the earth or to aircraft in flight. The major nations of the world made national legislations to observe the above space-related treaties, and to promote the space development, and to regulate the space activity. In Korea, the United States, Russia and Japan, the national space-related legislation regulates the government's liability of the launching state of the space object. The national space-related legislations of the major nations are as follows : the Outer Space Development Promotion Act and Outer Space Damage Compensation Act of Korea, the National Aeronautic and Space Act and Commercial Space Launch Act of the United States, the Law on Space Activity of Russia, and the Law concerning Japan Aerospace Exploration Agency and Space Basic Act of Japan. In order to implement the government's liability of the launching state of space object under space-related treaties and national legislations, and to establish the standing as a strong space nation, Korea shall improve the space-related policy, laws and system as follows : Firstly, the legal system relating to the space development and the space activity shall be maintained. For this matter, the legal arrangement and maintenance shall be made to implement the government's policy and regulation relating to the space development and space activity. Also the legal system shall be maintained in accordance with the elements for consideration when enacting the national legislation relevant to the peaceful exploration and use of outer space adopted by UN COPUOS. Secondly, the liability system for the space damage shall be improved. For this matter, the articles relating to the liability for the damage and the right of claiming compensation for the expense already paid for the damage in case of the joint launch and consigned launch shall be regulated newly. Thirdly, the preservation policy for the space environment shall be established. For this matter, the consideration and preservation policy of the environment in the space development and use shall be established. Also the rule to mitigate the space debris shall be adopted. Fourthly, the international cooperation relating to the space activity shall be promoted. For this matter, the international cooperation obligation of the nation in the exploration and use of outer space shall be observed. Also through the international space-related cooperation, Korea shall secure the capacity of the space development and enter into the space advanced nation.

  • PDF

DC Resistivity method to image the underground structure beneath river or lake bottom (하저 지반특성 규명을 위한 전기비저항 탐사)

  • Kim Jung-Ho;Yi Myeong-Jong;Song Yoonho;Cho Seong-Jun;Lee Seong-Kon;Son Jeongsul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.139-162
    • /
    • 2002
  • Since weak zones or geological lineaments are likely to be eroded, weak zones may develop beneath rivers, and a careful evaluation of ground condition is important to construct structures passing through a river. Dc resistivity surveys, however, have seldomly applied to the investigation of water-covered area, possibly because of difficulties in data aquisition and interpretation. The data aquisition having high quality may be the most important factor, and is more difficult than that in land survey, due to the water layer overlying the underground structure to be imaged. Through the numerical modeling and the analysis of case histories, we studied the method of resistivity survey at the water-covered area, starting from the characteristics of measured data, via data acquisition method, to the interpretation method. We unfolded our discussion according to the installed locations of electrodes, ie., floating them on the water surface, and installing at the water bottom, since the methods of data acquisition and interpretation vary depending on the electrode location. Through this study, we could confirm that the dc resistivity method can provide the fairly reasonable subsurface images. It was also shown that installing electrodes at the water bottom can give the subsurface image with much higher resolution than floating them on the water surface. Since the data acquired at the water-covered area have much lower sensitivity to the underground structure than those at the land, and can be contaminated by the higher noise, such as streaming potential, it would be very important to select the acquisition method and electrode array being able to provide the higher signal-to-noise ratio data as well as the high resolving power. The method installing electrodes at the water bottom is suitable to the detailed survey because of much higher resolving power, whereas the method floating them, especially streamer dc resistivity survey, is to the reconnaissance survey owing of very high speed of field work.

  • PDF

Control Policy for the Land Remote Sensing Industry (미국(美國)의 지상원격탐사(地上遠隔探査) 통제제탁(統制制度))

  • Suh, Young-Duk
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.20 no.1
    • /
    • pp.87-107
    • /
    • 2005
  • Land Remote Sensing' is defined as the science (and to some extent, art) of acquiring information about the Earth's surface without actually being in contact with it. Narrowly speaking, this is done by sensing and recording reflected or emitted energy and processing, analyzing, and applying that information. Remote sensing technology was initially developed with certain purposes in mind ie. military and environmental observation. However, after 1970s, as these high-technologies were taught to private industries, remote sensing began to be more commercialized. Recently, we are witnessing a 0.61-meter high-resolution satellite image on a free market. While privatization of land remote sensing has enabled one to use this information for disaster prevention, map creation, resource exploration and more, it can also create serious threat to a sensed nation's national security, if such high resolution images fall into a hostile group ie. terrorists. The United States, a leading nation for land remote sensing technology, has been preparing and developing legislative control measures against the remote sensing industry, and has successfully created various policies to do so. Through the National Oceanic and Atmospheric Administration's authority under the Land Remote Sensing Policy Act, the US can restrict sensing and recording of resolution of 0.5 meter or better, and prohibit distributing/circulating any images for the first 24 hours. In 1994, Presidential Decision Directive 23 ordered a 'Shutter Control' policy that details heightened level of restriction from sensing to commercializing such sensitive data. The Directive 23 was even more strengthened in 2003 when the Congress passed US Commercial Remote Sensing Policy. These policies allow Secretary of Defense and Secretary of State to set up guidelines in authorizing land remote sensing, and to limit sensing and distributing satellite images in the name of the national security - US government can use the civilian remote sensing systems when needed for the national security purpose. The fact that the world's leading aerospace technology country acknowledged the magnitude of land remote sensing in the context of national security, and it has made and is making much effort to create necessary legislative measures to control the powerful technology gives much suggestions to our divided Korean peninsula. We, too, must continue working on the Korea National Space Development Act and laws to develop the necessary policies to ensure not only the development of space industry, but also to ensure the national security.

  • PDF

Present Condition of Fortress of Silla Capital and Research Direction on Landscape Architecture (신라왕경 성곽의 현황과 조경학적 차원의 연구방향)

  • Kim, Hyung-Suk;Sim, Woo-Kyung;Lee, Won-Ho;Ahn, Gye-Bog
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Gyeongju, Silla capital, hasn't paid much attention to a value of fortress as advanced frame of landscape all the while. All have done until now were maintaining lots of fortress including Gyeongju and setting night landscape lighting for them or building a trail in mountain fortress. Hereupon, this study tried to take a look at historical and scenic value of fortress, landscape frame of Gyeongju-Silla capital, based on Wolseong and Myeonghwalseong and find the way to contribute to it on landscape architectural level. As Wolseong(月城) and Myeonghwalseong(明活城) functioned as royal palace in Silla Dynasty, they need some research and study on fortress inside in detail rather than restoring them by simply maintaining the shapes. While Wolseong has overall excavation investigation going on, Myeonghwalseong representing mountain fortress area is losing its value due to unbefitting management to a title of world heritage. If conducting close research and study on these remains, it seems like it could contribute a lot to landscape architectural research of Silla royal palace through tracks, which will be used as royal palace. Here I suggest research direction on landscape architectural level about fortress remains in Gyeongju area as followings. Firstly, away from all research focusing on fortress shape, consecration way, etc, we need to conduct a research comprisable of inner space of fortress. As Wolseong and Myeonghwalseong functioned as royal palace in Silla Dynasty, it'll be possible to research about ponds, Nu-Jeong(樓亭), drainage facilities, oddly shaped stones, moundings, pavements, circulation systems, planting traces, etc. For this, we need to research and study through comparison with cases of China, Japan and Goguryeo of the same age. Secondly, applying garden archaeological way is possible to translate objectively regarding research of ancient garden with low literature record. But attainable achievement and information will be limited if implementing excavation based on archaeology as excavations so far regarding excavation investigation of Wolseong. The alternative to such problem is participation plan of landscaping field through the foundation of garden archaeology. We might be able to attain many results on landscape architectural level from research, if conducting research and study about Silla capital including Wolseong by applying garden archaeology such as collection of environmental sample and discovery and analysis of remains through aerial photograph, archaeological research, analysis of historical building, surface exploration, excavation technique, analysis of soil and flowerpot, etc. For this, many people majored in landscape architecture need to try and acquire archaeological knowledge. Also, we need to call attention to internal garden archaeology through international academic symposium by inviting global experts in garden archaeology field. I've suggested the study of location of Wolseong and Silla fortress in Gyeongju area, plan research on using and treating trees about the space in and out of fortress and landscape architectural research direction of Wolseong fortress.

Identification of Advanced Argillic-altered Rocks of the Haenam Area, Using by ASTER Spectral Analysis (ASTER 분광분석을 통한 해남지역 강고령토변질 암석의 식별)

  • Lee, Hong-Jin;Kim, Eui-Jun;Moon, Dong-Hyeok
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.463-474
    • /
    • 2011
  • The Haenam epithermal mineralized zone is located in the southwestern part of South Korea, and hosts low sulfidation epithermal Au-Ag deposit (Eunsan-Moisan) and clay quarries (Okmaesan, Seongsan, and Chunsan). Epithermal deposits and accompanying hydrothermal alteration related to Cretaceous volcanism caused large zoned assemblages of hydrothermal alteration minerals. Advanced argillic-altered rocks with mineral assemblages of alunite-quartz, alunite-dickite-quartz, and dickite-kaolinite-quartz exposed on the Okmaesan, Seongsan, and Chunsan area. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), with three visible and near infrared bands, six shortwave infrared bands, and five thermal infrared bands, was used to identify advanced argillic-altered rocks within the Haenam epithermal mineralized zone. The distinct spectral features of hydrothermal minerals allow discrimination of advanced argillic-altered rocks from non-altered rocks within the study area. Because alunite, dickite, and kaolinite, consisting of advanced argillic-altered rocks within the study area are characterized by Al-O-H-bearing minerals, these acid hydrothermal minerals have a strong absorption feature at $2.20{\mu}m$. The band combination and band ratio transformation cause increasing differences of DN values between advanced argillic-altered rock and non-altered rock. The alunite and dickite-kaolinite of advanced argillic-altered rocks from the Okmaesan, Seongsan, and Chunsan have average DN values of 1.523 and 1.737, respectively. These values are much higher than those (1.211 and 1.308, respectively) of non-altered area. ASTER images can remotely provide the distribution of hydrothermal minerals on the surface. In this way good relation between ASTER spectra analysis and field data suggests that ASTER spectral analysis can be useful tool in the initial steps of mineral exploration.

Application of Terrestrial LiDAR for Reconstructing 3D Images of Fault Trench Sites and Web-based Visualization Platform for Large Point Clouds (지상 라이다를 활용한 트렌치 단층 단면 3차원 영상 생성과 웹 기반 대용량 점군 자료 가시화 플랫폼 활용 사례)

  • Lee, Byung Woo;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.177-186
    • /
    • 2021
  • For disaster management and mitigation of earthquakes in Korea Peninsula, active fault investigation has been conducted for the past 5 years. In particular, investigation of sediment-covered active faults integrates geomorphological analysis on airborne LiDAR data, surface geological survey, and geophysical exploration, and unearths subsurface active faults by trench survey. However, the fault traces revealed by trench surveys are only available for investigation during a limited time and restored to the previous condition. Thus, the geological data describing the fault trench sites remain as the qualitative data in terms of research articles and reports. To extend the limitations due to temporal nature of geological studies, we utilized a terrestrial LiDAR to produce 3D point clouds for the fault trench sites and restored them in a digital space. The terrestrial LiDAR scanning was conducted at two trench sites located near the Yangsan Fault and acquired amplitude and reflectance from the surveyed area as well as color information by combining photogrammetry with the LiDAR system. The scanned data were merged to form the 3D point clouds having the average geometric error of 0.003 m, which exhibited the sufficient accuracy to restore the details of the surveyed trench sites. However, we found more post-processing on the scanned data would be necessary because the amplitudes and reflectances of the point clouds varied depending on the scan positions and the colors of the trench surfaces were captured differently depending on the light exposures available at the time. Such point clouds are pretty large in size and visualized through a limited set of softwares, which limits data sharing among researchers. As an alternative, we suggested Potree, an open-source web-based platform, to visualize the point clouds of the trench sites. In this study, as a result, we identified that terrestrial LiDAR data can be practical to increase reproducibility of geological field studies and easily accessible by researchers and students in Earth Sciences.

Origin and Reservoir Types of Abiotic Native Hydrogen in Continental Lithosphere (대륙 암석권에서 무기 자연 수소의 성인과 부존 형태)

  • Kim, Hyeong Soo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.313-331
    • /
    • 2022
  • Natural or native abiotic molecular hydrogen (H2) is a major component in natural gas, however yet its importance in the global energy sector's usage as clean and renewable energy is underestimated. Here we review the occurrence and geological settings of native hydrogen to demonstrate the much widesprease H2 occurrence in nature by comparison with previous estimations. Three main types of source rocks have been identified: (1) ultramafic rocks; (2) cratons comprising iron (Fe2+)-rich rocks; and (3) uranium-rich rocks. The rocks are closely associated with Precambrian crystalline basement and serpentinized ultramafic rocks from ophiolite and peridotite either at mid-ocean ridges or within continental margin(Zgonnik, 2020). Inorganic geological processes producing H2 in the source rocks include (a) the reduction of water during the oxidation of Fe2+ in minerals (e.g., olivine), (b) water splitting due to radioactive decay, (c) degassing of magma at low pressure, and (d) the reaction of water with surface radicals during mechanical breaking (e.g., fault) of silicate rocks. Native hydrogen are found as a free gas (51%), fluid inclusions in various rock types (29%), and dissolved gas in underground water (20%) (Zgonnik, 2020). Although research on H2 has not yet been carried out in Korea, the potential H2 reservoirs in the Gyeongsang Basin are highly probable based on geological and geochemical characteristics including occurrence of ultramafic rocks, inter-bedded basaltic layers and iron-copper deposits within thick sedimentary basin and igneous activities at an active continental margin during the Permian-Paleogene. The native hydrogen is expected to be clean and renewable energy source in the near future. Therefore it is clear that the origin and exploration of the native hydrogen, not yet been revealed by an integrated studies of rock-fluid interaction studies, are a field of special interest, regardless of the presence of economic native hydrogen reservoirs in Korea.