• 제목/요약/키워드: Surface Expansion

Search Result 1,000, Processing Time 0.023 seconds

Frequency analysis of liquid sloshing in prolate spheroidal containers and comparison with aerospace spherical and cylindrical tanks

  • Mohammad Mahdi Mohammadi;Hojat Taei;Hamid Moosazadeh;Mohammad Sadeghi
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.439-455
    • /
    • 2023
  • Free surface fluid oscillation in prolate spheroidal tanks has been investigated analytically in this study. This paper aims is to investigate the sloshing frequencies in spheroidal prolate tanks and compare them with conventional cylindrical and spherical containers to select the best tank geometry for use in space launch vehicles in which the volume of fuel is very high. Based on this, the analytical method (Fourier series expansion) and potential fluid theory in the spheroidal coordinate system are used to extract and analyze the governing differential equations of motion. Then, according to different aspect ratios and other parameters such as filling levels, the fluid sloshing frequencies in the spheroidal prolate tank are determined and evaluated based on various parameters. The natural frequencies obtained for a particular tank are compared with other literature and show a good agreement with these results. In addition, spheroidal prolate tank frequencies have been compared with sloshing frequencies in cylindrical and spherical containers in different modes. Results show that when the prolate spheroidal tank is nearly full and in the worst case when the tank is half full and the free fluid surface is the highest, the prolate spheroidal natural frequencies are higher than of spherical and cylindrical tanks. Therefore, the use of spheroidal tanks in heavy space launch vehicles, in addition to the optimal use of placement space, significantly reduces the destructive effects of sloshing.

Analysis of Residual Stresses Induced by Cold Expansion Using Finite Element Method (유한요소법을 이용한 홀 확장 잔류응력 해석)

  • Kim, Cheol;Yang, Won-Ho;Heo, Seong-Pil;Jeong, Gi-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.46-51
    • /
    • 2002
  • Cold expansion of fastener holes is a mechanical process widely used in the aerospace industry. This treatment leads to an improvement of fatigue behavior due to the developed compressive residual stresses on the hole surface. The residual stress profile depends on the parameters of cold expansion, which are expanding rate, inserting direction of mandrel, material properties dtc. Despite its importance to aerospace industiries, little attention has been devoted to the accurate modeling of the process. In this paper, three-dimensional finite element simulations have been conducted for the cold expansion in an aluminium plate in order to predict the magnitude and distribution of the residual stress. To prove the results of FE analysis, the residual strain was measured by strain gage in cold expansion test. Maximum compressive residual stress could be increase about 7 percentage using the 2-step cold expansion method.

Durability Evaluation of a Buried Expansion Joint of Buried Folding Lattice Type (BFL형의 매설형 신축이음장치의 내구성 평가)

  • Jwa, Yong-Hyun;Park, Sang-Yeol;Kim, Seok-Hyun
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.9-20
    • /
    • 2011
  • Most of domestic expansion joint system was applied by exposed expansion joint system. There are cases where it is damaged by driving. As the result noise and impact happened, and the social cost due to frequent repair works is increasing. So based on the Asphalt Plug Joint(APJ) system that applied in the United States and Europe, new buried expansion joint system was lately developed a system of Buried Folding Lattice Joint(BFLJ) that changed substructure. In this research, we have tested for durability and flexibility performance of buried expansion joint system that based on the type of asphalt mixture. Also we have evaluated for durability of BFLJ system against vehicle load using accelerated pavement testing. As a result of the experiment, the developed BFLJ system gives high flexibility performance and resolves transformation concentration along the joint section more than APJ system. Also it could be seen that the BFLJ system could overcome the disadvantages of APJ and prevent early damage. Because surface deflection of BFLJ system against vehicle load was measured low, and sub system in the buried expansion joint system was not damaged against vehicle load.

Effect of Forward and Backward Arm Extension Movement of Pilates Exercise Using Cadillac Instrument on Trunk Muscle Activity (캐딜락 기구를 이용한 필라테스 전후방 팔 뻗기 동작이 체간 근 활성도에 미치는 효과)

  • Kim, Jinryeong;Hur, Sunghoon;An, Kyungjun;Kim, Songjune;Lee, Jongsam
    • The Korean journal of sports medicine
    • /
    • v.36 no.4
    • /
    • pp.197-206
    • /
    • 2018
  • Purpose: This study analyzed the muscle activity changes induced by motions of reaching forward and chest expansion that were examined from the bilateral muscles with rectus abdominis, external oblique, multifidus, and longissimus thoracic using Pilates cadillac instrument. Methods: Nine young adult women, who have no musculoskeletal disorder and any of chronic diseases, were participated. Surface electromyography system was used for recording of all signals produced by muscles, and then normalized as percentage of maximum voluntary isometric contraction (%MVIC). The paired t-test and repeated measures of analysis of variance was performed. Results: Reaching-forward motion showed a higher muscle activity from non-dominant external oblique muscle than that of the chest-expansion motion. During both reaching-forward motion and chest-expansion motion, MVIC values collected from dominant side of external oblique muscle were shown a significantly lower than the values obtained from non-dominant side (p<0.05). Conversely, %MVIC values in external oblique muscle collected from dominant side showed a significantly higher than the values obtained from non-dominant side of the same oblique muscle (p<0.05). Reaching-forward motion was caused a higher %MVIC on non-dominant external oblique muscle than that of the chest-expansion motion (p<0.05). Regardless of dominant or non-dominant sides, external oblique muscle was shown the highest activation rate of all the other muscles during reaching forward action, and longissimus thoracic muscle was shown the highest activation rate of all the other muscles during chest expansion action. Conclusion: Reaching-forward motion is suitable for activating an external oblique muscle, and chest-expansion motion is an effective enough in activating of longissimus thoracic muscle.

Experimental investigation of friction in expansion zone of tube hydroforming with material and lubricant (튜브 액압성형 공정의 확관영역에서 소재 및 윤활에 따른 마찰 특성의 실험적 연구)

  • Lee, G.Y.;Yim, H.S.;Lee, S.M.;Yi, H.K.;Chung, G.S.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.359-362
    • /
    • 2008
  • In this study, friction test was proposed to obtain coefficient of friction between tube and die in expansion zone of tube hydroforming and friction coefficients were evaluated at different materials, viscosity of lubricants and internal pressures. For this study, STKM11A and SUS tubes were prepared. The tube was expanded by an internal pressure against the tool wall. The tube was expanded by an internal pressure against the tool wall. By pushing the tube through the tool, a friction force at the contact surface between the tube and the tool occurs. From the measured geometries and FE analysis, the friction coefficients between tube and die at the expansion zone in tubular hydroforming can be estimated. The effects of the various internal pressures, viscosity of lubricants, tube materials and tube thickness on friction coefficients are discussed.

  • PDF

Prediction Methodology for Reliability of Semiconductor Packages

  • Kim, Jin-Young
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.09a
    • /
    • pp.79-94
    • /
    • 2002
  • Root cause -Thermal expansion coefficient mismatch -Tape warpage -Initial die crack (die roughness) Guideline for failure prevention -Optimized tape/Substrate design for minimizing the warpage -Fine surface of die backside Root cause -Thermal expansion coefficient mismatch - Repetitive bending of a signal trace during TC cycle - Solder mask damage Guideline for failure prevention - Increase of trace width - Don't make signal trace passing the die edge - Proper material selection with thick substrate core Root cause -Thermal expansion coefficient mismatch -Creep deformation of solder joint(shear/normal) -Material degradation Guideline for failure Prevention -Increase of solder ball size -Proper selection of the PCB/Substrate thickness -Optimal design of the ball array -Solder mask opening type : NSMD -In some case, LGA type is better

  • PDF

Comparison between Variational Approximation and Eigenfunction Expansion Method for Wave Transformation over a Step Bottom (단일계단 지형에서 변분근사법과 고유함수 전개법에 의한 파랑변형 비교)

  • Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.91-107
    • /
    • 2009
  • In order to compute linear wave transformation over a single step bottom, both variational approximation and eigenfunction expansion method are used. Both numerical results are in good agreement for reflection and transmission coefficients, surface displacement respectively. However x velocity profiles at the boundary of step are seen to be different to each other even though x velocity matching condition is used.

An experimental study about the water leakage structure of waterproofing layer performance demobilization method using of stick expansion type complex of flexible material (점착$\cdot$팽창성 유연형 복합소재를 이용한 누수구조물의 방수층 성능복원공법에 관한 실험적 연구)

  • Jang Hyok-Soo;Kang Hyo-Jin;Song Je-Young;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.79-83
    • /
    • 2005
  • In the reinforced concrete structure, Even if speak that water leakage occurrence is no problem to material, there is a lot of reasons construction factor, material damage by behavior structure, properties of matter change by years and water leakage part by environment condition. so, waterproofing technological consideration should be gone ahead. In this research, we will study about stick performance, concrete surface adhesive, damage and blow. we will check all things and test it. The stick expansion type complex of flexible material passed on result of standard. It is conducive to concrete of durability by waterproofing layer performance demobilitation technology on the water leakage structure for solution of problem and repair

  • PDF

An Application of Multipole Expansion to the Computation of Gravity Anomalies (Multipole 확장에 의한 중력이상의 계산과 응용)

  • Kim, So Gu
    • Economic and Environmental Geology
    • /
    • v.18 no.2
    • /
    • pp.159-166
    • /
    • 1985
  • The computation of gravity anomalies by multi pole expansion is derived and compared with exact calculation for right rectangular prisms and right circular cylinders. For sources near field points, the multipole expansion results in a better approximation in volume integrals than in surface integrals. Nonetheless two approximate methods are coincident in the far-field of the general geophyical prospecting.

  • PDF

A Study on the Acceleration and Deceleration Control of Free-Form Surfaces (자유곡면의 가감속 제어에 관한 연구)

  • Baek, Dae Kyun;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.745-751
    • /
    • 2016
  • This paper presents the acceleration and deceleration control of free-form surfaces. A rapid variation of acceleration (or Deceleration) drives the system into a machine shock, resulting in the inaccuracy of the path control of the NURBS curve. The pattern of acceleration control can be established using the curvature of the NURBS curve. The curvature can be easily calculated from the first and second derivative of the NURBS curve used in Taylor's expansion for NURBS interpolation. However, the derivatives are not used in the recursive method for NURBS interpolation. Hence, we attempted the difference-derivatives for calculating the NURBS curvature. Both, Taylor's expansion and the recursive method, are used jointly for controlling the acceleration in the same interpolation algorithm.