• Title/Summary/Keyword: Surface Expansion

Search Result 999, Processing Time 0.028 seconds

Study on the velocity of gadolinium atomic vapor produced by electron beam heating (전자빔 가열로 발생시킨 Gd 원자증기의 속도에 관한 연구)

  • 정의창;권덕희;고광훈;김택수
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.4
    • /
    • pp.228-234
    • /
    • 2003
  • The velocity of gadolinium(Gd) atomic vapor vaporized by an electron beam was measured by a microbalance. The velocity of about 900 ㎧ was obtained at an evaporation surface temperature of 2400-2500 K. The measured value was approximately 100 ㎧ faster than the maximum velocity of an ideal monatomic gas in an adiabatic expansion. This phenomenon can be explained that the internal energy of Gd atoms populated in higher excited levels at the high temperature should be convened to kinetic energy during adiabatic expansion. The calculated velocity agrees with the measured one when 100 excited energy levels are included in an enthalpy term for the velocity calculation. The characteristics of vapor flow as a function of heated surface temperature are also reported.

Fabrication and Characterization of Ytterbium Silicates for Environmental Barrier Coating Applications (환경차폐코팅용 이터븀 실리케이트의 제조와 물성평가)

  • Choi, Jae-Hyeong;Kim, Seongwon
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.331-339
    • /
    • 2021
  • Environmental barrier coatings(EBCs) are applied to the SiC/SiC ceramic matrix composites(CMCs) in order to protect CMCs from being corroded with water vapor by combustion gas in gas turbine engines. Ytterbium silicates, such as ytterbium monosilicate and ytterbium disilicate, are ones of the candidate materials for EBCs due to their excellent resistance to water vapor corrosion as well as thermal-expansion match with SiC. In this study, ytterbium silicates are fabricated with 2-step solid-state synthesis targeting ytterbium disilicate. After synthesizing ytterbium monosilicate, the mixtures of ytterbium monosilicate and SiO2 are heat-treated and densified by using pressureless sintering or hot pressing with a variety of heating conditions. The phase formation, thermal expansion, and oxidation behavior are examined with fabricated specimens. The final densified bodies are found to be composites between ytterbium monosilicate and ytterbium disilicate with different ratios, which results in 4.43 to 6.72×10-6/K range of coefficients of thermal expansion. The probability of these ytterbium silicates for EBC applications is also discussed.

Optomechanical Design and Structural Analysis of Linear Astigmatism Free - Three Mirror System Telescope for CubeSat and Unmanned Aerial Vehicle

  • Han, Jimin;Lee, Sunwoo;Park, Woojin;Moon, Bongkon;Kim, Geon Hee;Lee, Dae-Hee;Kim, Dae Wook;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.38.3-38.3
    • /
    • 2021
  • We are developing an optomechanical design of infrared telescope for the CubeSat and Unmanned Aerial Vehicle (UAV) which adapts the Linear Astigmatism Free- Three Mirror System in the confocal off-axis condition. The small entrance pupil (diameter of 40 mm) and the fast telescope (f-number of 1.9) can survey large areas. The telescope structure consists of three mirror modules and a sensor module, which are assembled on the base frame. The mirror structure has duplex layers to minimize a surface deformation and physical size of a mirror mount. All the optomechanical parts and three freeform mirrors are made from the same material, i.e., aluminum 6061-T6. The Coefficient of Thermal Expansion matching single material structure makes the imaging performance to be independent of the thermal expansion. We investigated structural characteristics against external loads through Finite Element Analysis. We confirmed the mirror surface distortion by the gravity and screw tightening, and the overall contraction/expansion following the external temperature environment change (from -30℃ to +30℃).

  • PDF

A Study on Correlation among Length Changes of Body Surface Total lines and Segment Lines -Changed Amount Caused by the Lower Limb Movements- (체표(體表)길이 변화(變化)의 상관성(相關性) 연구(硏究) - 다리(下肢) 동작(動作)에 따른 변화량(變化量)을 중심(中心)으로 -)

  • Cho, Sung Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.4
    • /
    • pp.622-637
    • /
    • 1993
  • The Purposes of this study were to investigate the significant correlation among the length changes of body surface total lines and between the length changes of body surface total lines and those of component body surface segment lines, and to reveal anticipated relation among body surface length changes by the lower limb movement including all movement direction of hip joint, knee joint & ankle joint for the more functional clothing making & designing. 10 Crosswise & 5 lengthwise body surface total lines and 48 crosswise & 39 lengthwise body surface segment lines of 26 female college students aged from 18 to 24 years were measured directly on the body surface and analyzed by ANOYA & Multiple Comparison Test(Tukey), and the length changes of them were calculated as the difference of the mean length at Fl movement from the mean length at each movement and were analyzed by PEARSON CORRELATION. The results were as following : 1. Correlation among the length changes of body surface total lines (1) Correlation among the length changes of body surface total lines significantly changed by the movement ; 1) The more GA5 expanded, the more GA6 & GA7 each expanded, and the more GA18 expanded, the more GA1 & GA3 each expanded. 2) The more GA15 expanded, the less GA14 each contracted. 3) The more GA7 expanded, the larger GA17 contracted. 4) The more GA1 & GA18 expanded, the larger GA16 contracted, and the larger GM contracted, the less GA16 contracted. (2) Only GA7 and GA17(at F4) showed high (over r=0.7) correlation coefficient, But others' correlation coefficients were r=0.4~0.7. (3) Correlation coefficients among & between girth items and length items 1) Correlation coefficients among girth items were shown + ; between GA3 and GA4, GA5, GA8, between GA5 and GA6, GA7, GA9 each, between GA1 and GA6 and between GA4 and GA7. 2) Correlation coefficients among length items were shown + or - ; shown + between GA14 and GA15 and between GA17 and GA16 ; but Shown - Between GAlS and GA16. 3) Correlation coefficients between girth items and length items were mainly shown - : shown-between GA1 and GA16, GA17, between, GA4 and GA16, between GA6, GA7 each and GA17, between GA8 and GA18 ; but shown + between GA1, GA3 each and GA18 and between GA8 and GA14 were shown +. 2. Correlation between the length changes of body surface total lines and those of component body surface segment lines. (1) All correlation coefficients were + except A147 of GA14. (2) Correlation coefficient over r=0.7 was shown ; between GA3 and CB3, A35 each, between GA5 and A054, between GA6 and A63, between GA7 and A72, A74 each, between GA8 and A83, A84 each, between GA15 and A153, between GA16 and Al64, Al65 each, between GA18 and A189 : but was not shown between GA4, GA17 and it's component body surface segment lines each. (3) Characteristics of correlation between the length changes of body surface total lines and those of body surface segment lines ; 1) If significant correlation of body surface total lines were expansion parts, it's component body surface segment lines was also expansion segment and the otherwise were the same. But exception was shown between expansion line GA3 and A031 (at F4), between GA18 and AlS9 (at F6) and between GA14 and A147, so to speak GA3 & lines and GA14 was contraction total line oppositely A147 was expansion. 2) The more GA3, GAlS expanded, the less A031, A189 contracted. 3) The more GA14 contracted, the more A147 expanded. 4) All correlation except the above 2), 3), the more total lines (GA1, GA3, GA5, GA15, GA16, GA18) expanded, the more segment lines (A15, CB1, A31, A34, CB3, A52, A54, A153, A169, A181) expanded, or the larger total lines (GA14, GA16, GA17) contracted, the larger segment lines (A141, A142, A161, A164, A165, A172) contracted.

  • PDF

Capabilities of stochastic response surface method and response surface method in reliability analysis

  • Jiang, Shui-Hua;Li, Dian-Qing;Zhou, Chuang-Bing;Zhang, Li-Min
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.111-128
    • /
    • 2014
  • The stochastic response surface method (SRSM) and the response surface method (RSM) are often used for structural reliability analysis, especially for reliability problems with implicit performance functions. This paper aims to compare these two methods in terms of fitting the performance function, accuracy and efficiency in estimating probability of failure as well as statistical moments of system output response. The computational procedures of two response surface methods are briefly introduced first. Then their capabilities are demonstrated and compared in detail through two examples. The results indicate that the probability of failure mainly reflects the accuracy of the response surface function (RSF) fitting the performance function in the vicinity of the design point, while the statistical moments of system output response reflect the accuracy of the RSF fitting the performance function in the entire space. In addition, the performance function can be well fitted by the SRSM with an optimal order polynomial chaos expansion both in the entire physical and in the independent standard normal spaces. However, it can be only well fitted by the RSM in the vicinity of the design point. For reliability problems involving random variables with approximate normal distributions, such as normal, lognormal, and Gumbel Max distributions, both the probability of failure and statistical moments of system output response can be accurately estimated by the SRSM, whereas the RSM can only produce the probability of failure with a reasonable accuracy.

A Study on the Design Factor for Increasing the Dynamic Fit of Slacks (슬랙스의 동적 적합성 향상을 위한 설계 요인 연구)

  • Cho, Sung-Hee
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.2
    • /
    • pp.162-180
    • /
    • 2008
  • The purpose of this study is to find the basic design factors that affect the changes in body surface lines caused by lower limb movements, thereby resulting in slacks that fit well regardless of whether the human form is static or in motion. Using unmarried female university students aged 18-24 as subjects, a total of 32 body surface lines (15 body surface total lines and 17 body surface segment lines) were measured in one static and 9 movement poses, The analysis first involved the calculation of the expansion and contraction rates per body part in body surface line in 9 lower limb movements, Second, a factor analysis was conducted using the expansion and contraction rates of these changes in body surface line. The results of this study are as follows, According to the factor analysis, basic design factors that affect changes in body surface lines comprised 8 types of factors as illustrated in fig, 2-fig, 9, which explained 79.2% of total variate for the variables studied, Factor 1, comprising the lower segment of center back leg line, center front leg line and inner leg line, and lower limb girth except midway thigh girth and ankle girth below hip girth, accounted for 30.3% of total variance, Factor 2, comprising waist girth, the total and upper segment of center back leg line and center tront leg line, and front and back segment of crotch length, explained 17.4% of total variance, Factor 3, the total and upper segment of lateral leg line at the center, accounted for 56.5% of total variance in accordance with Factors 1, 2, and 3, Factor 4 was the contracting upper part of lower leg between legscye girth and midway thigh girth, Factor 5 comprised the total and upper segment of inner leg line and posterior knee girth, Factor 6 was the total crotch length, Factor 7 was the ankle girth, Factor 8 was the abdomen girth.

Surface Modification of Alumina Ceramic with Mg2Al4Si5O18 Glass by a Sol-Gel Process (졸-겔 공정으로 합성된 코디어라이트를 이용하여 알루미나의 표면개질)

  • Choi, Pil-Gyu;Chu, Min Cheol;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.48-52
    • /
    • 2014
  • The Mg-enriched magnesium aluminum silicate (MAS) glass is known for its higher mechanical strength and chemical resistance. Among such glasses, cordierite ($Mg_2Al_4Si_5O_{18}$) is well known to have a low thermal expansion and low melting point. Polycrystalline engineering ceramics such as alumina can be strengthened by a surface modification with low thermal expansion materials. The present study involves the synthesis of cordierite by a sol-gel process and investigates the effect of glass penetration on the surface of alumina. The cordierite powders were prepared from $Al(OC_3H_7)_3$, $Mg(OC_2H_5)_2$ and tetraethyl orthosilicate by hydrolysis and condensation reaction. The cordierite powders were characterized by X-ray diffraction (XRD, Rigaku), scanning electron microscope (SEM, JEOL: JSM-5610), energy dispersive spectroscopy (EDS, JEOL: JSM-5610), and universal testing machine (UTM, INSTRON). The X-ray diffraction patterns showed that the synthesized particles were ${\mu}$-cordierite calcined at $1100^{\circ}C$ for 1 h. The shape of synthesized cordierite was changed from ${\mu}$-cordierite to ${\alpha}$-cordierite with increasing calcination temperature. Synthesized cordierite was used for surface modification of alumina. Cordierite powders penetrated deeply into the alumina sample along grain boundaries with increasing temperature. The results of surface modification tests showed that the strength of the prepared alumina sample increased after surface modification. The strength of a surface modified with synthesized cordierite increased the most, to about 134.6MPa.

Effect of laser shock peening and cold expansion on fatigue performance of open hole samples

  • Rubio-Gonzalez, Carlos;Gomez-Rosas, G.;Ruiz, R.;Nait, M.;Amrouche, A.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.867-880
    • /
    • 2015
  • Mechanical fastening is still one of the main methods used for joining components. Different techniques have been applied to reduce the effect of stress concentration of notches like fastener holes. In this work we evaluate the feasibility of combining laser shock peening (LSP) and cold expansion to improve fatigue crack initiation and propagation of open hole specimens made of 6061-T6 aluminum alloy. LSP is a new and competitive technique for strengthening metals, and like cold expansion, induces a compressive residual stress field that improves fatigue, wear and corrosion resistance. For LSP treatment, a Q-switched Nd:YAG laser with infrared radiation was used. Residual stress distribution as a function of depth was determined by the contour method. Compact tension specimens with a hole at the notch tip were subjected to LSP process and cold expansion and then tested under cyclic loading with R=0.1 generating fatigue cracks on the hole surface. Fatigue crack initiation and growth is analyzed and associated with the residual stress distribution generated by both treatments. It is observed that both methods are complementary; cold expansion increases fatigue crack initiation life, while LSP reduces fatigue crack growth rate.

Using the Finite Element Method, 3 Dimensional FE Analysis of Residual Stress by Cold Expansion Method in the Plate Baying Adjacent Holes (인접홀에서 홀확장법 적용시, 유한요소법을 이용한 잔류응력해석)

  • Yang Won-Ho;Cho Myoung-Rae;Jang Jae-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.528-532
    • /
    • 2006
  • In the aerospace industry, Cold expansion has been used the most important method that is retarded of crack initiation from fastener hole surface. Cold expansion method(CEM) is that a oversized tapered mandrel goes through the hole in order to develop a compressive residual stress as the passing of the mandrel around the hole. Therefore, because of characteristic of mandrel inserting, Residual Stress Distributions (RSD) are differently generated form Entry, Mid and Exit position of the plate. Also, it is respected that RSD are changed as distances between holes. In this paper, It is performed a FE analysis of RSD by CEM and it is respectively shown RSD in the Entry, Mid and Exit position. It is compared residual stress results form the cold expansion in these two cases: the concurrent CEM and the sequential CEM. From this research, it has been found that compressive residual stress of Entry position is lower than other positions. Also, the concurrent CE of adjacent holes leads to much higher compressive residual stress than the sequential CE. In addition, in the sequential CE case, a compressive RSD of 1 step's hole around is lower than compressive RSD of 2 step's hole around.

Effect of Low-Temperature Conditions on Expansion of Choux (슈의 팽화에 대한 저온 조건의 영향)

  • Kim, Myoung Ae
    • Journal of the Korean Society of Food Culture
    • /
    • v.33 no.3
    • /
    • pp.276-282
    • /
    • 2018
  • This study examined the effects of low temperature conditions on the expansion of choux when mixing the dough with egg fluid. The egg fluid was tested at 5 and $17^{\circ}C$, and the dough temperature was 20, 30, 40, 50, 60 or $70^{\circ}C$. The expansion decreased with decreasing temperature of the egg fluid and dough, with the concomitant formation of membranes in the cavities of choux because of the poor emulsion stability of the choux paste. In addition, the structure of the choux pastry was not dense and the cracks in the surface were partial and narrow. The shape, expansion and cracks of choux were the best at a dough temperature of 60 and $70^{\circ}C$ added with egg fluid at $17^{\circ}C$. The temperature of the choux paste in these two samples was higher than the melting point of the butter used to produce the paste. Therefore, the practical limit temperature when mixing the egg fluid and dough is 20 and $60^{\circ}C$, respectively, and care should ve taken to maintain a low temperature when making choux in confectionary.