• Title/Summary/Keyword: Surface Enhancement

Search Result 1,200, Processing Time 0.03 seconds

Babinet-principle-inspired Metasurfaces for Resonant Enhancement of Local Magnetic Fields

  • Seojoo, Lee;Ji-Hun, Kang
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.97-103
    • /
    • 2023
  • In this paper, we propose Babinet-principle-inspired metasurfaces for strong resonant enhancement of local magnetic fields. The metasurfaces are designed as complementary structures of original metasurfaces supporting the local enhancement of electric fields. We show numerically that the complementary structures can support spoof magnetic surface plasmons that induce strong local magnetic fields without sacrificing the deep sub-wavelength-thick nature of the metasurface. By introducing a periodic array of metallic rods in the proximity of the metasurfaces, we demonstrate that a resonant enhancement of the local magnetic fields, more than 80 times the amplitude of an incident magnetic field, can emerge from a resonance of the spoof magnetic surface plasmons.

SERS Study of Quinoline Using the Silver Surface (Silver Surface를 이용한 Quinoline의 SERS 연구)

  • Lee, Chul-Jae;Jung, Maeng-Joon;Kim, Dong-Yeub
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.3
    • /
    • pp.101-104
    • /
    • 2011
  • In this study, the experiments for surface enhancement of silver surfaces were done, where we checked the characteristics of silver surfaces made by Tollen's method. The surface enhancement of Quinoline was analyzed by three kind of silver mirror substrates. The assignments of the vibrational bands shown in SERS spectra are given based on both literature and the semi-empirical calculations at the PM3 methods. Finally, we deduced that the adsorption orientation of quinoline was little tilted flat to the silver mirror surfaces by using of the surface selection rules.

Enhancement of Surface Diffusivity for Waviness Evolution on Heteroepitaxial Thin Films

  • Kim, Yun Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.287-292
    • /
    • 2014
  • The present study deals with a numerical analysis on the island growth of heteroepitaxial thin-films through local surface diffusivity enhancement. A non-linear governing equation for the surface waviness evolution in lattice-mismatched material systems is developed for the case of spatially-varying surface diffusivity. Results show that a flat film that is stable under constant diffusivity conditions evolves to form nanostructures upon externally-induced spatial diffusivity modulation. The periodicity of waviness can be controlled by changing the modulation parameters, which allows for generation of pattern arrays. The present study therefore points towards a post-deposition treatment technique that achieves controllability and order in the structure formation process for applications in nanoelectronics and thin-film devices.

Double-Layered Frequency Selective Surface Superstrate Using Ring Slot and Dipole-Shaped Unit Cell Structure

  • Lee, Hong-Min;Kim, Yong-Jin
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.86-91
    • /
    • 2010
  • In this paper, a double-layered frequency selective surface(FSS) superstrate was built and tested. The unit cell of the proposed FSS consists of a ring slot and a dipole-shaped structure and shows a complementary frequency response. Each unit cell is printed on two sides of a substrate. By using these double-layered structures, the first resonant frequency of the pass-band can be lowered. As a result, the size of the unit cell is minimized and the spacing between the other cells is reduced. The proposed FSS-dipole composite antenna is designed for the gain enhancement of wide-band code division multiple access(WCDMA) frequency bands(1.92~2.17 GHz) with a low quality factor(Q=0.17). To verify the gain enhancement performance of the FSS, an FSS-dipole composite antenna was created. Although the FSS layer enhances the gain of the primary radiation source of the dipole antenna, the FSS-dipole complex antenna cannot show a uniform gain over the entire desired frequency band. The experimental results show a gain enhancement of 3 dBi with an FSS superstrate in the WCDMA frequency band.

Heat Transfer Enhancement using Nano Particles coated Surface (나노 코팅을 이용한 열전달 향상에 대한 연구)

  • Gang, Myung-Bo;KIm, Woo-Joong;Kim, Nam-Jin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.2
    • /
    • pp.8-14
    • /
    • 2018
  • A boiling heat transfer is used in various industry such as power generation systems, heat exchangers, air-conditioning and refrigerations. In the boiling heat transfer system, the critical heat flux (CHF) is the important factor, and it indicated safety of the system. It has kept up studies on the CHF enhancement. Recently, it is reported the CHF enhancement, when working fluid used the nanofluid with excellent thermal properties. Therefore, in this study, we investigated the influence of nano particles coated surface for heat transfer enhancement in pure water, oxidized multi-wall carbon nanotube nanofluid (OMWCNT), and oxidized graphene nanofluid (OGraphene). Nanoparticles were coated for 120 sec on the surface, and we measured the CHF at the flow velocities of 0.5, 1.0, and 1.5 m/sec, respectively. As the results, both of the OMWCNT and OGraphene nanofluids increased up to about 34.0 and 40.0%.

Pool Boiling Enhancement of R-123 Using Perforated Plates (다공판을 사용한 R-123 풀비등 열전달 촉진)

  • Kim, Nae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.275-281
    • /
    • 2016
  • In this study, we investigate the pool boiling enhancement caused by perforated plates on top of a smooth surface. We conduct tests using R-123 at atmospheric pressure. It was shown that perforated plates significantly enhanced the pool boiling of the smooth surface. The reason may be attributed to the increased bubble contact area between the plates. The results showed that the enhancement ratio was dependent on the heat flux. At high heat flux, the enhancement ratio increased as the porosity increased. However, at low heat flux, the enhancement ratio decreased as the porosity increased. For the present investigation, the optimum configuration had a pore diameter of 2.0 mm, pore pitch of $2.5mm{\times}5.0mm$ or $5.0mm{\times}5.0mm$, and a gap width of 0.5 mm, which yielded heat-transfer coefficients that are close to those of GEWA-T. The optimum porosity for R-123 was significantly larger than that of water or ethanol. The reason for this may be the large liquid-to-vapor density ratio along with the small latent heat of vaporization of R-123. The perforated plates yielded smaller boiling hysteresis compared with that of the smooth surface.

Experimental Investigations on Pool Boiling CHE of Nano-Fluids (나노유체의 풀비등 임계열유속에 대한 실험적 연구)

  • Kim, Hyung-Dae;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.949-956
    • /
    • 2007
  • Pool boiling critical heat flux (CHF) of nanofluids with oxide nanoparticles of $TiO_2$ or $Al_2O_3$ was experimentally investigated under atmospheric pressure. The results showed that a dispersion of oxide nanoparticles significantly enhances the CHF over that of pure water. Moreover it was found that nanoparticles were seriously deposited on the heater surface during pool boiling of nanofluids. CHF of pure water on a nanoparticle-deposited surface, which is produced during the boiling of nanofluids, was not less than that of nanofluids. The result reveals that the CHF enhancement of nanofluids is absolutely attributed to modification of the heater surface by the nanoparticle deposition. Then, the nanoparticle-deposited surface was characterized with parameters closely related to pool boiling CHF, such as surface roughness, contact angle, and capillary wicking. Finally, reason of the CHF enhancement of nanofluids is discussed based on the changes of the parameters.

An Experimental Study on the Cooling Effect by a Turbulence Promoter in Impinging Air Jet System (충돌분류계(衝突噴流系)에서 난류촉진체(亂流促進體)에 의한 방열효과(放熱效果)에 관(關)한 연구(硏究))

  • Lee, Y.H.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.1
    • /
    • pp.48-56
    • /
    • 1992
  • The purpose of this study was to investigate the enhancement of heat transfer without additional external power in the case of rectangular air jet impinging vertically on the flat heating surface. In an attempt to enhance the heat transfer rate in two-dimensional impinging jet, the technique used in the present study was placement of square rod bundles as a turbluence promoter in front of the heat transfer surface. The effects of the clearance between the flat plate and square rod, and the nozzle exit velocity on the heat transfer characteristics have been investigated experimentally. The results obtained through this study were summerized as follows. High heat transfer enhancement was achived by means of flow acceleration and thinning of boundary layer by inserting rods in front of the heating flat plate. The smaller the clearance between rod and heating plate was, the larger heat transfer effect became. Average Nusselt number reached maximum at $Re=5.76{\times}10^4$ and C=1㎜ and the enhancement rate of heat transfer became maxium at this condition with the enhancement ratio as high as about 1.427 when normalized by the flat plate value. The correlating equation of average Nusselt number and Reynolds number was obtained, which is $\bar{N}uo=1.324{\cdot}Re^{0.459}{\cdot}(C/A)^{-0.034}$.

  • PDF

Enhancement of Microbial Immobilization on the Surface of a Reticulated PU-g-PAAc Foam prepared through Graft Copolymerization induced by Atmosoheric Pressure Plasma Treatment (대기압 플라즈마 유도 그라프트 공중합으로 합성된 망상형 PU-g-PAAc 폼의 미생물 고정화능 향상)

  • Myung Sung Woon;Jang Yung Mi;Nam Ki Chun;Choi Ho Suk;Cho Dae Chul
    • KSBB Journal
    • /
    • v.19 no.5
    • /
    • pp.399-405
    • /
    • 2004
  • A reticulated PU-g-PAAc foam was modified through the surface treatment of PU foam by one atmospheric pressure plasma. The synthesized PU-g-PAAc foam was prepared for the purpose of immobilizing microbial organisms. We also attempted different plasma treatment methods including simple plasma treatment, plasma induced grafting and plasma induced grafting followed by plasma re-treatment. The effect of grafting on equilibrium water content (EWC) of PU forms was examined by swelling measurements. Adhesion test was performed to investigate the effect of different plasma treatment methods on the improvement of microbial immobilization. Two foams modified by plasma induced grafting and plasma re-treatment after grafting showed 2.7 and 3.0 fold higher microbial immobilization than unmodified one, respectively. Meanwhile, simple plasma treatment showed a little enhancement. FT-IR analysis of each sample verified the contribution of surface functional groups on the enhancement of microbial immobilization. SEM observation confirmed microbial adherence.

Diameter Effect of Silver Nanorod Arrays to Surface-enhanced Raman Scattering

  • Gu, Geun Hoi;Kim, Min Young;Yoon, Hyeok Jin;Suh, Jung Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.725-730
    • /
    • 2014
  • The effect the diameter of silver nanorod arrays whose distance between the nanorods was uniform at 65 nm have on Surface-enhanced Raman Scattering (SERS) has been studied by varying the diameter from 28 to 51 nm. Nanorod length was fixed at approximately 62 nm, which is the optimum length for SERS by excitation with a 632.8 nm laser line. The transverse and longitudinal modes of the surface plasmon of these silver nanorods were near 400 and 630 nm, respectively. The extinction of the longitudinal mode increased with increasing nanorod diameter, while the transverse mode did not change significantly. High-quality SERS spectra of p-aminothiophenol and benzenethiol adsorbed on the tips of the silver nanorods were observed by excitation with a 632.8 nm laser line. The SERS enhancement increased with increasing nanorod diameter. We concluded that the SERS enhancement increases when the diameter of silver nanorods is increased mainly by increasing the excitation efficiency of the longitudinal mode. The enhancement factor for the silver nanorods with a 51 nm diameter was approximately $2{\times}10^7$.