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Abstract

 The present study deals with a numerical analysis on the island growth of heteroepitaxial thin-films through
local surface diffusivity enhancement. A non-linear governing equation for the surface waviness evolution
in lattice-mismatched material systems is developed for the case of spatially-varying surface diffusivity. Results
show that a flat film that is stable under constant diffusivity conditions evolves to form nanostructures upon
externally-induced spatial diffusivity modulation. The periodicity of waviness can be controlled by changing
the modulation parameters, which allows for generation of pattern arrays. The present study therefore points
towards a post-deposition treatment technique that achieves controllability and order in the structure formation
process for applications in nanoelectronics and thin-film devices.
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1. INTRODUCTION

Island formation on heteroepitaxial thin-films has
been a topic of great interest in recent decades
because of its potential for applications in nano-
electronics. In a lattice-mismatched material system,
such as a silicon-germanium (SiGe) thin-film, the
lattice constants of silicon (Si) and germanium (Ge)
are 5.43 Å and 5.64 Å at 300 K, respectively, and
the mismatch induces elastic strain in the film when
a Ge layer is deposited on a Si wafer. The film
initially grows layer-by-layer for the first few mono-
layers (ML), but above a critical thickness, which is
typically 3 MLs for a 100 % Ge film, islands
coalesce due to the stronger interactions between
adatoms than the bonding between the adatom and
the surface. This islanding behavior is known as the
Stranski-Krastanov growth1), and evolution of the
structure is attributable to the energy minimization in
the material system to relax the elastic strain energy
in the film at the expense of increase surface energy.

The nanoscale island structures have attractive
optoelectronic properties such as discrete atom-like
energy levels, thermal stability, delta-function-like
density of states, and highly reproducible transport
behavior2). Especially with the increasing interest in
renewable and sustainable energy, many innovative
ideas have been proposed to incorporate such
nanostructures into solar-energy conversion devices.
One example would be the quantum-dot (QD) solar-
cell. When QDs are regularly positioned in the cell
design, intermediate-band (IB) or miniband structures
are formed to reduce thermalization and transmission
loss, and as a result the solar-cell efficiency is
enhanced3). Investigations show that the maximum
power conversion efficiency can be theoretically as
high as 45% for a QD solar-cell that has 10~20
layers of indium-arsenide (InAs) QDs encapsulated
by an aluminum-gallium-arsenide (AlGaAs) high
potential barrier fence under AM1.5 spectral
radiation.4) Although experimental studies5-8) at the
current stage show lower efficiencies, mostly ranging
from 7 to 12%, another theoretical study predicts that
it can be as high as 25 ~ 50% depending on the
precise control of QD dimension and gallium content
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in InxGa1-xN/GaN QD IB solar-cells.9)

Thus, achieving dimensional uniformity in the
island formation is important for device fabrication
since the size and distribution affect performance. In
addition, reproducibility is also a requirement for
quality-control issues in manufacturing. However, the
spontaneous structure formation process observed in
lattice-mismatched material systems is mainly
governed by stress-driven mass diffusion, which is
inherently a statistical process that results in an
element of randomness, and this is detrimental to
device realization. While many approaches to
regularize the pattern formation depend on strain-
engineering methods that make use of photoli-
thographically-predefined substrates,10-12) these require
repetitive fabrication process steps, and may limit the
choice of substrates. Therefore, instead of using those
energetically-favored growth methods, a different
route is needed to kinetically form the islands
through a local diffusivity modulation.

Here, a numerical study is presented to demonstrate
that a periodic temperature distribution, which could
be obtained by localized heating, enhances the
surface diffusivity of an initially flat and strained
film, perturbing the morphology to self-assembled
regular nanostructure arrays. The governing equation
that describes the structure growth under the
diffusivity modulation is formulated, and conditions
for the numerical implementation are presented.
Results obtained from the proposed approach are
discussed, and effects of various modulation
conditions are also assessed. 

2. EVOLUTION EQUATION

The mathematical domain of analysis is defined
such that the film with the slightly larger lattice
parameter is located in the region 0 < z < h(x,y,t) on
a substrate as shown in Fig. 1. Studies13-15) have

shown that the initially flat film is strained due to the
lattice-mismatch, and it is morphologically unstable.
Therefore, the surface undulates to find a steady-state
shape as the material system seeks to lower its
energy. The process is known to occur through
stress-driven surface diffusion of atoms. Assuming
that the film is dislocation-free, the mass flux can be
written as follows:

(1)

where Ds is the surface diffusivity, cs is the concen-
tration of diffusing species, kb is the Boltzmann
constant, θ is the surface temperature, and χ is the
surface chemical potential. Previous studies13-15)

considered Ds and θ as spatially constant, supposing
that the whole film is uniformly annealed in an oven
or furnace. In the present approach, however, a
situation is considered such that a source of local
perturbation is provided to impose spatially-periodic
surface temperature boundary conditions. The surface
temperature is then a function of spatial variables, x

and y. Accordingly, Ds in the Arrhenius form is
modified as:

(2)

where D0 is the pre-exponential factor and Ed is the
activation barrier for surface diffusion. Then Eq. (1)
is modified as:

(3)

Regarding the chemical potential, χ, it is well
known that the evolution of the film morphology is a
result of competition between the surface free energy
and elastic strain energy.13 Research16 showed that the
introduction of a wetting term in χ reduces numerical
difficulties by considering the discrete change of
surface energy across the film-substrate interface as a
smooth and continuous function within a transition
boundary-layer. Therefore, the surface chemical
potential is taken as:

(4)

where Ω is the atomic volume. Here, specific forms
of mathematical representation for strain energy (U),
surface energy (γFκ), and wetting energy (ω) follow
what are proposed in Ref. 17:

j
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----------∇sχ–=
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Fig. 1. Problem description. The morphology of an

initially flat and strained film is evolving with a

normal velocity of vn. The film and substrate are

elastic materials in a continuum space.
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 on z = h(x,y,t)  (5)

(6)

(7)

where  and  are the stress and linear elasticity
strain tensors in the film, Δγ is the difference
between the film and substrate surface energies, and
δ is the transition boundary-layer thickness.

Assuming that there is no incoming flux of atoms
onto the surface, and the film deposition has been
completed, the normal velocity of surface height
growth due to diffusion driven morphology change is
expressed as:

 (8)

Incorporating Eq. (3) into Eq. (8) leads to the
growth equation:

(9)

Suppose that a spatially-periodic surface temper-
ature variation is provided so that Ds/q is appro-
ximated as:

(10)

where  is the mean of Ds/q, εD is the amplitude of
the diffusivity variation, and lD is the wavelength of
the modulation profile. One can easily obtain such
conditions using laser-beam interference patterns or a
spatial-light modulator, resulting in a sinusoidal
surface temperature profile that locally enhances the
surface diffusivity where higher-intensity fringes are
illuminated. Normalization of Eq. (9) results in a
dimensionless governing equation as:

(11)

Expressions for  and r are presented in detail
in Refs. 15 and 17. Eq. (11) shows that the diffu-
sivity modulation affects the velocity of surface

waviness growth. If Ds and q are spatially constant,
then the first term on the right hand side of Eq. (11)
disappears and the growth is only influenced by the
chemical potential term, .

3. NUMERICAL IMPLEMENTATION

For the numerical solution of Eq. (11), the central
finite difference formula with fourth-order accuracy
and the backward differentiation formulas (BDFs,
also known as the Gear’s method) were employed
for discretization in space and evolution in time,
respectively. The total number of spatial nodal points
are 72×72 in space and the normalized time step is
ΔT = 0.01. A periodic boundary condition was
applied. Material parameters were taken for an
example of a Si0.5Ge0.5 film on a Si substrate, and the
weighted average of 100% Si and Ge properties were
used for the film. The shear moduli of the film and
substrate are μF = 45.7 GPa and μS = 50.9 GPa,
respectively. Poisson’s ratios of the film and substrate
are νF = 0.276 and νS = 0.278, respectively. In this
case, the elastic energy density leads to U0 = 2
ε0

2μF(1+νF)/(1–νF) = 64.4 MPa, where ε0 is the biaxial
elastic strain, ε0 = (aS–aF)/aF. The lattice parameter of
Si0.5Ge0.5 film is 5.55 Å. The surface energies of the
film and substrate are taken to be γF = 2.220 J/m2

and γS = 2.513 J/m2, respectively. The transition
boundary layer thickness, δ, is 0.012 nm, and the
characteristic film thickness is H0 = 4 nm. A steady-
state solution was deemed to be achieved when the
average growth rate at a certain time step was less
than 1 % of the initial growth rate:

< 0.01  (12)

where n is the total number of nodal points.

4. RESULTS AND DISCUSSION

4.1. Uniform surface diffusivity under a stable

regime

An initial perturbation of the height is chosen in
the form: 

(14)
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where the parameters were chosen such that H0=
0.25, εh = 10-3, and Λh = 3.0 for validation. Based on
a stability analysis,15 it is known that for the
parameters under consideration the film is always
stable under a critical thickness (Hc) and over a
critical wavenumber (Ac = 2p Λc) and as such the
perturbations should not grow under these conditions.
As shown in Fig. 2(a), the numerical simulation indeed
shows that the surface does not grow with respect time.
The normalized average growth rate in Fig. 2(b) depicts
that the amplitude drops below 1% and the morphology
change is negligible afterward. In a similar way, the film
is always planar for any Λh at a critical thickness (Hc =
0.19 in our case) as well as any H over a critical
wavenumber (Ac > 2.29 or Λh < 2.7).

4.2. Uniform surface diffusivity under an unsta-

ble regime

Next, the film thickness was increased to H0 = 1.0

while other parameters were kept the same (εh = 10-3

and Λh = 3.0) so that the initial perturbation falls into
the unstable regime. Figure 3(a) reveals that a pattern
emerges even with constant diffusivity, just as QDs
form on the surface of a SiGe film over the critical
thickness. The variation of normalized average growth
rate with respect to time is presented in Fig. 3(b). The
growth is accelerated until T = 3.92 but slows down
until it reaches a steady-state at T = 4.55.

4.3. Pattern formation on a stable film through

surface diffusivity modulation

From now on, a case is considered in which the
system is expected to be stable under constant
diffusivity. Initial perturbation parameters are still
H0= 0.25, εh = 10-3, and Λh = 3.0. However, the
surface diffusivity is intentionally modulated in
various ways. Consider a spatially-varying surface

Fig. 2. The growth behavior of a film under stable

regime. (a) The morphology remains flat and

did not evolve. (b) The normalized average

growth rate decreases below 1%.

Fig. 3. Surface waviness evolution under unstable

regime. (a) A pattern emerges when the film is

thick enough under constant diffusivity conditions.

(b) Corresponding growth rate changes with

respect to time.
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diffusivity as follows:

(16)

A result for the diffusivity modulation of ΛD =3.0
is presented in Fig. 4(a). The modulation condition is
graphically presented in the inset. Unlike the case of
constant diffusivity in Fig. 2(a), patterns self-
assemble on the initially flat film. When ΛD was
changed from 3.0 to 1.5, the periodicity of steady-
state structure again followed that of the modulation
in Fig. 4(b). In additional examples, spot-modulation
conditions were provided through a combination of
sinusoidal functions in two dimensions for the local
diffusivity enhancement, and again the modulation
guided the growth of structures, leading to ordered
arrays on the film as illustrated in Figs. 4(c) and
4(d). Since no incoming flux of atoms was assumed
in the problem description, mass conservation is
maintained within the domain of analysis, and thus
the amplitude of patterns decreases as the number of
islands increases in the area.

Regarding the stability of the evolved steady-state
patterns, a question may arise whether the obtained
island pattern goes back to a flat film once the
externally induced diffusivity modulation stops.

However, an examination of the chemical potential
gradient at the steady-state reveals that it has reached
to a near-zero value and there is no further driving
force for the surface diffusion. As an illustration, Fig. 5
presents the change of normalized root-mean-square
(RMS) of the chemical potential gradient with
respect to time. During the surface waviness
evolution the chemical potential gradient eventually
drops to a very small value. Since Ñχ = 0, the right-
hand side of Eq. (11) tends to zero and there is no
change of surface height with respect to time. To
confirm that the morphology is not evolving any
further, the steady-state solution was taken as an
initial perturbation and fed into the governing
equation for the case of constant diffusivity. As
expected, the calculation did not proceed any more.
From an experimental point of view, this foresees
that a post-deposition thermal treatment can produce
nanostructures on a flat SiGe surface by locally
enhancing the surface diffusivity. Also, as opposed to
the strain-engineering method,10-12) this approach will
simplify the pattern formation process by eliminating
the need for pre-defined substrates that require
repetitive fabrication steps. 

5. SUMMARY

A concept is numerically validated such that an
island formation is initiated and aligned via local
surface diffusivity enhancement in this study. Taking

D s 1.0 0.1cos
2πX

12
----------⎝ ⎠
⎛ ⎞ 1 sin

2π Y ΛD–( )
12

--------------------------⎝ ⎠
⎛ ⎞+–=

)

Fig. 4. Growth of ordered quantum-dot arrays. The

specific diffusivity modulation conditions are (a)

= 1.0 – 0.1cos(2πX/12)[1 + sin[2π(Y – 3)/12]]

(b) = 1.0 – 0.1cos(2πX/12)[1 + sin[2π(Y –

1.5)/6]] (c) = 1.0 – 0.1cos(2πX/6)[1 + sin

[2π(Y – 1.5)/6]] (d) = 1.0 – 0.1sin(2πX/6)sin

(2πY/6). Insets show graphical representation of

local diffusivity modulation.

D s

)

D s
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D s
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Fig. 5. The normalized RMS of the chemical potential

gradient with respect to time. Note that this

becomes a near-zero value, confirming that

there is no further driving force for the growth

and accordingly the morphology will not return

to the flat surface after the diffusivity modulation

stops.
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the temperature-induced spatially-varying diffusivity
into account, a governing equation was formulated
and simulations on the morphology evolution were
performed. Results show that with the local
diffusivity modulation structures are formed even on
a flat film under a stable regime which otherwise
would have not grown under constant diffusivity
conditions. Also, by taking advantage of the spatial
selectivity in the patterning process, ordered patterns
can be generated with the adjustment of diffusivity
modulation conditions. The present study suggests a
possible way to regularize island structures in lattice-
mismatched material systems by a post-deposition
laser-treatment, leading to a simplified fabrication
technique for applications in a lattice-mismatched
materials system.
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