• Title/Summary/Keyword: Surface Currents

Search Result 576, Processing Time 0.034 seconds

Characteristics of a Turbidite Sediment from the Southern Margin of the Okinawa Trough, Japan (오끼나와해곡 남쪽해역의 저탁류 퇴적물의 특성)

  • 현상민
    • 한국해양학회지
    • /
    • v.30 no.2
    • /
    • pp.69-76
    • /
    • 1995
  • A turbidite core sediment (RN88-PC5) from 2051 m on the deep-sea floor at the southern margin of Okinawa Trough was examined. Sedimentological characteristics were quite different between sandy sediments and hemipelagic sediments and hemipelagic sediments in terms of benthic foraminiferal assemblage, grain-size and chemical composition. All turbidite sandy sediments were clearly transported from shallow area as they include typical coral reef dwelling benthic foraminifera which were not found in the background hemipelagic sediments. These layers also suggest that the sediments were transported by turbidity-related currents and implies that sedimentological mechanisms were different between sandy sediments and hemipelagic sediments. The result of the /SUP 14/ C age dating and the stable oxygen isotopic fluctuation of planktonic foraminifera show a gradual warming trend of the surface water from about 10 Ka to present. Also Termination lb as well as two fresh water input events were recognized at ca2 and 7 ka.

  • PDF

PWM-based Integral Sliding-mode Controller for Unity Input Power Factor Operation of Indirect Matrix Converter

  • Rmili, Lazhar;Hamouda, Mahmoud;Rahmani, Salem;Blanchette, Handy Fortin;Al-Haddad, Kamal
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1048-1057
    • /
    • 2017
  • An indirect matrix converter (IMC) is a modern power generation system that enables a direct ac/ac conversion without the need for any bulky and limited lifetime electrolytic capacitor. This system also allows four-quadrant operation, generation of sinusoidal output voltage waveforms with variable frequency and amplitude, and control of input power factor. This study proposes a pulse-width modulation-based sliding-mode controller to achieve unity input-power factor operation of the IMC independently of the active power exchanged with the grid, as well as a fast dynamic response. The designed equivalent control law determines, at each sampling period, the appropriate q-axis component of the modulated input current to be injected into the grid through the LC input filter. An integral term of the error is included in the expression of the sliding surface to increase the accuracy of the control method. A double space vector modulation method is used to synthesize the direction of the space vector of the input currents as required by the sliding-mode controller and the space vectors of the target output voltages. Simulation and experimental results are provided to show the effectiveness and evaluate the performance of the proposed control method.

Some Applications of SAR Imagery to the Coastal Waters of Korea (한국 주변 해역에서의 SAR 영상 응용예)

  • 김태림
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.1
    • /
    • pp.61-71
    • /
    • 1999
  • Several physical phenomena on the sea surface are analyzed from SAR images of South Sea areas, Korea. Strong wave patterns propagating in southerly direction are seen in ERS-1 SAR image on October 11, 1994, and a wave directional spectrum is calculated from this image using the SAR modulation transfer function. RADARSAT SAR image of August 15, 1996 reveals internal waves in northern coastal waters of Cheju Island. Analysis indicates that the internal waves may have been generated by the tidal currents traveling over the shallow bottom of the stratified water in the summer during the tidal changeovers fro ebb to flood and shows patterns of trains of solitons. RADARSAT SAR image taken 3 days after the oil spill accident near Goeje Isalnd on April 3, 1997 detects distinct oil slicks from the accident area but also shows slicks near the coast caused by wind sheltering of coastal mountains and chemical-biological activities.

A study on the manufacturing of metal/plastic multi-components using the DSI molding (DSI 성형을 이용한 금속/플라스틱 복합 부품 제조에 관한 연구)

  • Ha, Seok-Jae;Cha, Baeg-Soon;Ko, Young-Bae
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.71-77
    • /
    • 2020
  • Various manufacturing technologies, including over-molding and insert-injection molding, are used to produce hybrid plastics and metals. However, there are disadvantages to these technologies, as they require several steps in manufacturing and are limited to what can be reasonably achieved within the complexities of part geometry. This study aims to determine a practical approach for producing metal/plastic hybrid components by combining plastic injection molding and metal die casting to create a new hybrid metal/plastic molding process. The integrated metal/plastic hybrid injection molding process developed in this study uses the proven method of multi-component technology as a basis to combine plastic injection molding with metal die casting into one integrated process. In this study, the electrical conductivity and ampacity were verified to qualify the new process for the production of parts used in electronic devices. The electrical conductivity was measured, contacting both sides of the test sample with constant pressure, and the resistivity was measured using a micro ohmmeter. Also, the specific conductivity was subsequently calculated from the resistivity and contact surface of the conductor path. The ampacity defines the maximum amount of current a conductive path can carry before sustaining immediate or progressive deterioration. The manufactured hybrid multi-components were loaded with increasing currents, while the temperature was recorded with an infrared camera. To compare the measured infrared images, an electro-thermal simulation was conducted using commercial CAE software to predict the maximum temperature of the power loaded parts. Overall, during the injection molding process, it was demonstrated that multifunctional parts can be produced for electric and electronic applications.

Effective Interfacial Trap Passivation with Organic Dye Molecule to Enhance Efficiency and Light Soaking Stability in Polymer Solar Cells

  • Rasool, Shafket;Zhou, Haoran;Vu, Doan Van;Haris, Muhammad;Song, Chang Eun;Kim, Hwan Kyu;Shin, Won Suk
    • Current Photovoltaic Research
    • /
    • v.9 no.4
    • /
    • pp.145-159
    • /
    • 2021
  • Light soaking (LS) stability in polymer solar cells (PSCs) has always been a challenge to achieve due to unstable photoactive layer-electrode interface. Especially, the electron transport layer (ETL) and photoactive layer interface limits the LS stability of PSCs. Herein, we have modified the most commonly used and robust zinc oxide (ZnO) ETL-interface using an organic dye molecule and a co-adsorbent. Power conversion efficiencies have been slightly improved but when these PSCs were subjected to long term LS stability chamber, equipped with heat and humidity (45℃ and 85% relative humidity), an outstanding stability in the case of ZnO/dye+co-adsorbent ETL containing devices have been achieved. The enhanced LS stability occurred due to the suppressed interfacial defects and robust contact between the ZnO and photoactive layer. Current density as well as fill factors have been retained after LS with the modified ETL as compared to un-modified ETL, owing to their higher charge collection efficiencies which originated from higher electron mobilities. Moreover, the existence of less traps (as observed from light intensity-open circuit voltage measurements and dark currents at -2V) are also found to be one of the reasons for enhanced LS stability in the current study. We conclude that the mitigation ETL-surface traps using an organic dye with a co-adsorbent is an effective and robust approach to enhance the LS stability in PSCs.

Present and Prospect of Ocean Observation Using Pressure-recording Inverted Echo Sounder (PIES) (압력측정 전도음향측심기(PIES)를 활용한 해양관측의 현재와 전망)

  • CHANHYUNG JEON;KANG-NYEONG LEE;HAJIN SONG;JEONG-YEOB CHAE;JAE-HUN PARK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.1
    • /
    • pp.51-61
    • /
    • 2023
  • Sound can travel a long distance in the ocean; hence, acoustic instruments have been widely used for ocean observations in various fields such as bathymetric survey, object detection, underwater communication, and current measurements. Herein we introduce a pressure-recording inverted echo sounder (PIES) which is one of the most powerful instruments, moored at seafloor for ocean observation in physical oceanography. The PIES can measure various kinds of oceanic phenomena (currents, mesoscale eddies, internal waves, and sea surface height variabilities) and support acoustic telemetry and pop-up data shuttle (PDS) system for remote data acquisition. In this paper, we review uses of PIES and describe present and prospective system of PIES including remote data acquisition toward (quasi) real-time data recovery.

Research Trends on Interface-type Resistive Switching Characteristics in Transition Metal Oxide (전이 금속 산화물 기반 Interface-type 저항 변화 특성 향상 연구 동향)

  • Dong-eun Kim;Geonwoo Kim;Hyung Nam Kim;Hyung-Ho Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.32-43
    • /
    • 2023
  • Resistive Random Access Memory (RRAM), based on resistive switching characteristics, is emerging as a next-generation memory device capable of efficiently processing large amounts of data through its fast operation speed, simple device structure, and high-density implementation. Interface type resistive switching offer the advantage of low operation currents without the need for a forming process. Especially, for RRAM devices based on transition metal oxides, various studies are underway to enhance the memory characteristics, including precise material composition control and improving the reliability and stability of the device. In this paper, we introduce various methods, such as doping of heterogeneous elements, formation of multilayer films, chemical composition adjustment, and surface treatment to prevent degradation of interface type resistive switching properties and enhance the device characteristics. Through these approaches, we propose the feasibility of implementing high-efficient next-generation non-volatile memory devices based on improved resistive switching properties.

Impacts of Argo temperature in East Sea Regional Ocean Model with a 3D-Var Data Assimilation (동해 해양자료동화시스템에 대한 Argo 자료동화 민감도 분석)

  • KIM, SOYEON;JO, YOUNGSOON;KIM, YOUNG-HO;LIM, BYUNGHWAN;CHANG, PIL-HUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.3
    • /
    • pp.119-130
    • /
    • 2015
  • Impacts of Argo temperature assimilation on the analysis fields in the East Sea is investigated by using DAESROM, the East Sea Regional Ocean Model with a 3-dimensional variational assimilation module (Kim et al., 2009). Namely, we produced analysis fields in 2009, in which temperature profiles, sea surface temperature (SST) and sea surface height (SSH) anomaly were assimilated (Exp. AllDa) and carried out additional experiment by withdrawing Argo temperature data (Exp. NoArgo). When comparing both experimental results using assimilated temperature profiles, Root Mean Square Error (RMSE) of the Exp. AllDa is generally lower than the Exp. NoArgo. In particular, the Argo impacts are large in the subsurface layer, showing the RMSE difference of about $0.5^{\circ}C$. Based on the observations of 14 surface drifters, Argo impacts on the current and temperature fields in the surface layer are investigated. In general, surface currents along the drifter positions are improved in the Exp. AllDa, and large RMSE differences (about 2.0~6.0 cm/s) between both experiments are found in drifters which observed longer period in the southern region where Argo density was high. On the other hand, Argo impacts on the SST fields are negligible, and it is considered that SST assimilation with 1-day interval has dominant effects. Similar to the difference of surface current fields between both experiments, SSH fields also reveal significant difference in the southern East Sea, for example the southwestern Yamato Basin where anticyclonic circulation develops. The comparison of SSH fields implies that SSH assimilation does not correct the SSH difference caused by withdrawing Argo data. Thus Argo assimilation has an important role to reproduce meso-scale circulation features in the East Sea.

Device Performances Related to Gate Leakage Current in Al2O3/AlGaN/GaN MISHFETs

  • Kim, Do-Kywn;Sindhuri, V.;Kim, Dong-Seok;Jo, Young-Woo;Kang, Hee-Sung;Jang, Young-In;Kang, In Man;Bae, Youngho;Hahm, Sung-Ho;Lee, Jung-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.601-608
    • /
    • 2014
  • In this paper, we have characterized the electrical properties related to gate leakage current in AlGaN/GaN MISHFETs with varying the thickness (0 to 10 nm) of $Al_2O_3$ gate insulator which also serves as a surface protection layer during high-temperature RTP. The sheet resistance of the unprotected TLM pattern after RTP was rapidly increased to $1323{\Omega}/{\square}$ from the value of $400{\Omega}/{\square}$ of the as-grown sample due to thermal damage during high temperature RTP. On the other hand, the sheet resistances of the TLM pattern protected with thin $Al_2O_3$ layer (when its thickness is larger than 5 nm) were slightly decreased after high-temperature RTP since the deposited $Al_2O_3$ layer effectively neutralizes the acceptor-like states on the surface of AlGaN layer which in turn increases the 2DEG density. AlGaN/GaN MISHFET with 8 nm-thick $Al_2O_3$ gate insulator exhibited extremely low gate leakage current of $10^{-9}A/mm$, which led to superior device performances such as a very low subthreshold swing (SS) of 80 mV/dec and high $I_{on}/I_{off}$ ratio of ${\sim}10^{10}$. The PF emission and FN tunneling models were used to characterize the gate leakage currents of the devices. The device with 5 nm-thick $Al_2O_3$ layer exhibited both PF emission and FN tunneling at relatively lower gate voltages compared to that with 8 nm-thick $Al_2O_3$ layer due to thinner $Al_2O_3$ layer, as expected. The device with 10 nm-thick $Al_2O_3$ layer, however, showed very high gate leakage current of $5.5{\times}10^{-4}A/mm$ due to poly-crystallization of the $Al_2O_3$ layer during the high-temperature RTP, which led to very poor performances.

Estimation of Effective Range of HFR Data and Analysis of M2 Tidal Current Characteristics in the Jeju Strait (제주해협 HFR 자료의 유효 범위 산정과 M2 조류 특성 분석)

  • Oh, Kyung-Hee;Lee, Seok;Park, Joonseong;Song, Kyu-Min;Jung, Dawoon
    • Ocean and Polar Research
    • /
    • v.42 no.2
    • /
    • pp.115-131
    • /
    • 2020
  • The effective range of surface current data observed by high-frequency radar (HFR) operated in the northern coastal area of Jeju Island by Korea Institute of Ocean Science and Technology was estimated and the distribution and variability of the M2 tidal current of the Jeju Strait was analyzed. To evaluate the HFR data, the M2 tidal current corrected from 25 hours current data observed by the Korea Hydrographic and Oceanographic Agency (KHOA) was compared with the M2 tidal current in the Jeju Strait analyzed from the surface currents of HFR. The reliability of HFR data was confirmed by analyzing the characteristics of the tide components of these two data sets, and the effective range of HFR data was estimated through temporal and spatial analysis. The observation periods of HFR used in the analysis were from 2012 to 2014, and it was confirmed that there is a difference in the effective range of HFR data according to the observation time. During the analysis periods, the difference between the M2 current ellipses from the data of KHOA and the HFR was greater in the eastern than in the western part of the Jeju Strait, and represented a high reliability in the western and central parts of the Jeju Strait. The tidal current of the Jeju Strait analyzed using the HFR data revealed a seasonal variability a relatively weak in summer and a strong in winter, about a 17% fluctuations between the summer and winter based on the length of the semi-major axis of tidal ellipse. Appraisals and results of regarding the characteristics and seasonal variability of the M2 tidal current in the Jeju Strait using HFR data have not been previously reported, so the results of this study are considered meaningful.