• Title/Summary/Keyword: Surface Currents

Search Result 578, Processing Time 0.026 seconds

Sedimentation Pattern in a Macrotidal Bay (Namhaepo Bay), West coast of Korea (한국 서해안 대조차 만(남해포만)에서의 퇴적양상)

  • LEE, SANG-DO;PARK, SOO-CHUL
    • 한국해양학회지
    • /
    • v.26 no.4
    • /
    • pp.332-339
    • /
    • 1991
  • The sedimentation pattern in Namhaepo Bay, a macrotidal coastal embayment of western Korea, was investigated by means of analysing high-resolution seismic profiles, sediment samples, and tidal currents. Recent sediments up to 20 m which overlie the irregular surface of the acoustic basement. The sediments consist mainly of sandy silt and silt; the mean grain size of these sediments ranges from 4 to 5.5 phi, showing a shoreward-fining distribution pattern. This distribution pattern agrees are largely reversed during ebb, with a maximum velocity of 39 cm/sec. The calculated shear velocity of the tidal currents at sea bed ranges from 0.5 to 3.3 cm/sec during flood and from 0.7 to 2.5 cm/sec during ebb. The mean values of these velocities exceed the critical shear velocity for the silt particles. The data suggest that the tidal currents play an important role in the transportation and deposition of sediments in the bay and the surface topography of the sea floor is largely deter-mined by tidal sedimentation.

  • PDF

Interannual Variability of the Water Masses Observed in the Tropical Northwestern Pacific (북서태평양 열대해역에서 관측된 수괴의 경년변동성)

  • Choi, Eunji;Jeon, Dongchull
    • Ocean and Polar Research
    • /
    • v.38 no.2
    • /
    • pp.161-169
    • /
    • 2016
  • The interannual variability of the water masses was analyzed from the CTD data measured in the tropical northwestern Pacific from 2006 to 2014. There are two typical water masses NPTW and NPIW that reveal the interannual variability in the survey area, in addition to two other water masses; the surface water mass TSW with a large seasonal variability and the deep water mass AACDW with a constant temperature-salinity characteristic at the depths deeper than 2,000 meters. In 2012 and 2014 NPTW was the most widely extended horizontally and thicker than 100 meters vertically, which was found over the entire survey area. However, NPTW was reduced and became much narrower in 2009 than in the other years. NPIW seemed to expand southwards from the north of $21^{\circ}N$ to $15^{\circ}N$ in 2008 and in 2012, which showed the salinity minimum in 2013 (< 34.15 psu). The sea surface height estimated by Absolute Dynamic Topography (ADT) approximately along $135^{\circ}E$ section showed the high peaks (> $1.45dyn{\cdot}m$) between $16^{\circ}N$ and $18^{\circ}N$ during the periods between 2007 and 2009 and between 2012 and 2013; the former peak lasted wider and longer in latitude and time (about three times) than the latter. The vertical section of the geostrophic currents in the upper 1,000 meters shows that there was a mesoscale pattern of repeated eastward and westward flows a few times in some years (2010 and 2014), which seemed to disappear in some other years (2008 and 2012); the former was closely related to the mesoscale eddies and the latter implied the pattern with the permanent currents. The persistent eastward flow between $17^{\circ}N$ and $19^{\circ}N$ seems to be related to the Subtropical Countercurrent (STCC).

A Review of Ocean Circulation of the East/Japan Sea (한국 동해 해수순환의 개략적 고찰)

  • 김종규
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.103-107
    • /
    • 2001
  • The major studies of an ocean circulation of the East/Japan Sea related to evaluate the feasibility and utilization of deep ocean water are reviewed. The major feature of surface current system of the East/Japan Sea is an inflow of the Tsushima Warm Current through the Korea/Tsushima Strait and the outflow through the Tsugaru and Soya Straits. The Tsushima Warm Current has been known to split into two or three branches in the southern region of the East/Japan Sea. In the cold water region of the East/Japan Sea, the North Korean Cold Current turns to the east near 39$^{\circ}$N after meeting the East Korean Warm Current, then flows eastward. The degree of penetration depends on the strength of the positive wind stress curl, according to the ventilation theory. Various current meter moorings indicate strong and oscillatory deep currents in various parts of the basin. According to some numerical experiments, these currents may be induced by pressure-topography or eddy-topography interaction. However, more investigations are needed to explain clearly the presence of these strong bottom currents. This study concludes the importance of topographical coupling, isopycnal outcropping, different wind forcing and the branching of the Tsushima Warm Current on the circulation of the East/Japan Sea.

  • PDF

Treatment of Bone Repair by Inductively Magnetic Fields

  • Ahn, Jae-Mok;Lee, Woo-Cheol;Kim, Hee-Chan;Min, Byoung-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.213-217
    • /
    • 1992
  • An inductively coupled magnetical signal (pulse wave, 0.7 to 60Hz, eighteen volts peak to Peak) that was applied non-invasively on the skin surface overlying the approximate site(measure position). In the group with unipolar pulse signal currents produced smaller than in the group with bipolar pulse signal. The signal was transmitted to the active coil, including a time-varying magnetic field: this in turn induced a the-varying electrical field in the field in the bone. It is very important to determine system parameters due to treatment time(healing) and the simplicity. This paper investigation was designed to compare the relative effects of pulsed unipolar currents with the effects of an identical pulsed bipolar currents. Since Inductive coupling is non-invasive and involves portable equipment, it is easy to apply and requires precise localization, it has distinct advantages and field characteristics along the bone for each different signal.

  • PDF

Evaluation of Antenna Pattern Measurement of HF Radar using Drone (드론을 활용한 고주파 레이다의 안테나 패턴 측정(APM) 가능성 검토)

  • Dawoon Jung;Jae Yeob Kim;Kyu-Min Song
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.109-120
    • /
    • 2023
  • The High-Frequency Radar (HFR) is an equipment designed to measure real-time surface ocean currents in broad maritime areas.It emits radio waves at a specific frequency (HF) towards the sea surface and analyzes the backscattered waves to measure surface current vectors (Crombie, 1955; Barrick, 1972).The Seasonde HF Radar from Codar, utilized in this study, determines the speed and location of radial currents by analyzing the Bragg peak intensity of transmitted and received waves from an omnidirectional antenna and employing the Multiple Signal Classification (MUSIC) algorithm. The generated currents are initially considered ideal patterns without taking into account the characteristics of the observed electromagnetic wave propagation environment. To correct this, Antenna Pattern Measurement (APM) is performed, measuring the strength of signals at various positions received by the antenna and calculating the corrected measured vector to radial currents.The APM principle involves modifying the position and phase information of the currents based on the measured signal strength at each location. Typically, experiments are conducted by installing an antenna on a ship (Kim et al., 2022). However, using a ship introduces various environmental constraints, such as weather conditions and maritime situations. To reduce dependence on maritime conditions and enhance economic efficiency, this study explores the possibility of using unmanned aerial vehicles (drones) for APM. The research conducted APM experiments using a high-frequency radar installed at Dangsa Lighthouse in Dangsa-ri, Wando County, Jeollanam-do. The study compared and analyzed the results of APM experiments using ships and drones, utilizing the calculated radial currents and surface current fields obtained from each experiment.

Experimental Study on Wave Attenuating Effect of a Pneumatic Breakwater by Using a Multiple Parallel Manifold (다중 병렬 분기관을 이용한 압축공기 방파제의 소파효과에 관한 실험적 연구)

  • KIM JONG-WOOK;Shin Hyun-Soo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.257-262
    • /
    • 2004
  • A series of preliminary model tests are performed to find out the wave attenuating effect of the pneumatic breakwater of environment friendly type, which is a bubble screen generated by releasing compressed air from a submerged multiple parallel manifold Rising bubbles induce vertical current, which produces horizontal currents flowing away from the bubble-screen area in both directions. Near bottom, the corresponding currents flow toward the bubble screen, thus completing the circulation pattern. The surface current moving against the direction of wave propagation causes some attenuation of the waves. It becomes more effective as the relative depth (d/ L) increases (short-period waves in deep water). With the same air-discharge, the multiple parallel manifold can be more effective for the attenuation of longer waves through optimum arrangement of manifold number. installation depth, manifold gap, etc. The pneumatic breakwater will give a wide utilization as a device for protecting harbor facilities and as a simple, mobile breakwater.

  • PDF

Wide-Range Sensorless Control for SPMSM Using an Improved Full-Order Flux Observer

  • Lee, Kyoung-Gu;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.721-729
    • /
    • 2015
  • A sensorless control method was recently investigated in the robot and automation industry. This method can solve problems related to the rise of manufacturing costs and system volume. In a vector control method, the rotor position estimated in the sensorless control method is generally used. This study is based on a conventional full-order flux observer. The proposed full-order flux observer estimates both currents and fluxes. Estimated d- and q-axis currents and fluxes are used to estimate the rotor position. In selecting the gains, the proposed full-order flux observer substitutes gain k for the speed information in the denominator of the gain for fast convergence. Therefore, accurate speed control in a low-speed region can be obtained because gains do not influence the estimation of the rotor position. The stability of the proposed full-order flux observer is confirmed through a root-locus method, and the validity of the proposed observer is experimentally verified using a surface permanent-magnet synchronous motor.

Installation of Induced Current Measurement Systems in Substations and Analysis of GIC Data during Geomagnetic Storms

  • Choi, Kyu-Cheol;Park, Mi-Young;Ryu, Youngsoo;Hong, Youngsu;Yi, Jong-Hyuk;Park, Sung-Won;Kim, Jae-Hun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.427-434
    • /
    • 2015
  • Coronal Mass Ejections (CME), which originate from active regions of the Sun's surface, e.g., sunspots, result in geomagnetic storms on Earth. The variation of the Earth's geomagnetic field during such storms induces surface currents that could cause breakdowns in electricity power grids. Hence, it is essential to both monitor Geomagnetically Induced Currents (GICs) in real time and analyze previous GIC data. In 2012, in order to monitor the variation of GICs, the Korean Space Weather Center (KSWC) installed an induced current measurement system at SINGAPYEONG Substation, which is equipped with 765 kV extra-high-voltage transformers. Furthermore, in 2014, two induced current measurement systems were installed on the 345 kV high-voltage transformers at the MIGEUM and SINPOCHEON substations. This paper reports the installation process of the induced current measurement systems at these three substations. Furthermore, it presents the results of both an analysis performed using GIC data measured at the SINGAPYEONG Substation during periods of geomagnetic storms from July 2013 through April 2015 and the comparison between the obtained GIC data and magnetic field variation (dH/dt) data measured at the Icheon geomagnetic observatory.

Optimal Design of an MRI Device Considering the Homogeneity of the Magnetic Field (자기장의 균일성을 고려한 자기공명장치의 최적설계)

  • Lee, Jung-Hoon;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.654-659
    • /
    • 2008
  • This paper is to suggest a concept design of the permanent magnet type magnetic resonance imaging (MRI) device based on the parameter optimization method. Pulse currents in the gradient coils will introduce the effect of eddy currents in the ferromagnetic material, which will worsen the quality of imaging. In order to equalize the magnetic flux in the MRI device for good imaging, the eddy current effect in the ferromagnetic material must be taken into account. This study attempts to use the design of experiment (DOE) and the response surface method (RSM) for equalizing the magnetic flux of the permanent magnet type MRI device using that the magnetic flux can be calculated directly using a commercial finite element analysis package. As a result, optimal shapes of the pole and the yoke of the PM type MRI device can be obtained. The commercial package, ANSYS, is used for analyzing the magnetic field problem and obtaining the resultant magnetic flux.

Variation in Leakage Current Characteristics of Polymer Insulator for Various Environmental Condition (여러 환경조건에 대한 고분자애자의 누설전류 특성 변화)

  • Park Jae-Jun;Choi In-Hyuk;Lee Dong-il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.2
    • /
    • pp.169-175
    • /
    • 2006
  • This study investigated variation leakage current maximum value and waveform considering applied voltage phase angel by simulating three environmental conditions, such as fog, salt fog, and kaolin contamination .As the result of applied voltage phase angel characteristics, leakage currents presented almost in phases in the early stage regardless of environmental conditions just after applying the voltage, and the phase of leakage currents certain phase lags for the discharge of the applied voltage when surface discharges occurred due to the continuous environmental contamination. In addition, the difference in phase significantly increased according to the intensity of discharges. The change in distortion rates according to the environmental contamination presented a nearly same level just after applying the voltage. The distortion rate of third harmonic for the fundamental wave presented by the order of fog>salt fog>kaolin when surface discharges occurred due to the applied voltage for certain continued periods. In the case of the fog and salt fog, the scale of spectrums decreased according to the increase in frequencies from the results of the analysis of high frequencies. In addition, the even number frequency presented a relatively large level compared to the odd number frequency under the kaolin contamination.