• 제목/요약/키워드: Surface Conductance Modulation

검색결과 8건 처리시간 0.022초

유전영동을 기반으로 하는 탄소 나노구조의 선택적인 분리 (Selective Separation of Carbon Nanostructures based on Dielectrophoresis)

  • 강준모;홍승현;최재붕;김영진;백승현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1737-1741
    • /
    • 2008
  • Dielectrophoretic behavior of semiconducting single-walled carbon nanotubes(SWNT) was investigated theoretically and experimentally. The surface conductance of nanotubes was modulated using anionic and cationic surfactant mixtures. The experimental results indicate that dielectrophoretic behavior of SWNT highly depends on the procedure of mixing two opposite-charged surfactants. Clausius-Mossotti factor was calculated by measuring zeta potentials and solution conductivity. Raman spectroscopy was used to characterize the dielectrophoretically deposited nanotubes arrary. We found that metallic nanotubes were selectively separated from the nanotubes suspension, resulting from modulation of surface conductance of semiconducting SWNT.

  • PDF

Redox Reaction Investigation of Graphene Nanoribbon

  • Yu, Young-Jun
    • Applied Science and Convergence Technology
    • /
    • 제27권2호
    • /
    • pp.35-37
    • /
    • 2018
  • The redox reaction on graphene nanoribbon (GNR) field effect transistors(FET) has been studied. In detail, upon employing an electrolyte gating, we verified electron transport performance modulation of GNR FET by monitoring conductance variation under oxidation and reduction processes. The conductance enhancement of GNR via removal of PMMA residue on graphene surface during redox cycles was also observed.

단일벽 탄소나노튜브의 표면 전도도 조절 및 유전영동에 대한 영향 (Surface Conductance Modulation of Single-Walled Carbon Nanotubes and Effects on Dielectrophoresis)

  • 홍승현;정세훈;김영진;최재봉;백승현
    • 대한기계학회논문집A
    • /
    • 제30권2호
    • /
    • pp.179-186
    • /
    • 2006
  • Dielectrophoresis has received considerable attention for separating nanotubes according to electronic types. Here we examine the effects of surface conductivity of semiconducting single-walled carbon nanotubes (SWNT), induced by ionic surfactants, on the sign of dielectrophoretic force. The crossover frequency of semiconducting SWNT increases rapidly as the conductivity ratio between the particle and medium increases, leading to an incomplete separation of ionic surfactant suspended SWNT at an electric field frequency of 10 MHz. The surface charge of SWNT is neutralized by an equimolar mixture of anionic surfactant sodium dodecyl sulfate (SDS) and cationic surfactant cetyltrimenthylammonium bromide (CTAB), resulting in negative dielectrophoresis of semiconducting species at 10 MHz. A comparative Raman spectroscopy study shows a nearly complete separation of metallic SWNT.

표면 광전압을 이용한 ZnSe 에피층의 특성 연구 (A study on characteristics of ZnSe epilayer by using surface photovoltage)

  • 최상수;정명랑;김주현;배인호;박성배
    • 한국진공학회지
    • /
    • 제10권3호
    • /
    • pp.350-355
    • /
    • 2001
  • 반절연성 GaAs 위에 분자선 에피택시(MBE)법으로 성장된 ZnSe 에피층의 특성을 표면 광전압(SPV)법을 이용하여 연구하였다. 측정으로는 증가하는 광세기 및 변조 주파수에 따라 시행하였다. 미분한 표면 광전압(DSPV) 신호로부터 ZnSe 에피층의 띠간 에너지는 결정되었다. 실온의 표면 광전압 신호로부터 5개의 준위들이 관측되었는데, 이러한 준위들은 성장시 계면에서 형성되는 불순물 및 결함과 관계된다. 관측된 준위들은 입사광 세기에 따른 외인성 전이의 경향을 보여주었다. 실온에서 관측되지 않은 1s와 2s 엑시톤 흡수와 관계된 신호가 80 K에서 측정한 표면 광전압 스펙트럼에서 두 개의 피크로 분리되어 나타났다. 변조 주파수 의존성으로부터 시료의 접합콘덕턴스 및 용량을 구하였다.

  • PDF

Effect of pH on Calcium-Activated Potassium Channels in Pulmonary Arterial Smooth Muscle Cells of the Rabbit

  • Lee, Suk-Ho;Ho, Won-Kyung;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • 제25권1호
    • /
    • pp.17-26
    • /
    • 1991
  • Single smooth muscle cells of the rabbit pulmonary artery were isolated by treatment with collagenase and elastase. Using the patch clamp technique, potassium channel activity was recorded from the inside-out membrane patch. The channel had a sin히e channel conductance of about 360 pS in symmetrical concentration of K on both sides of the patch, 150 mM, and had a linear current-voltage relationship. During the application of 10 mM tetraethylammonium (TEA) to the intracellular membrane surface, the amplitude of single channel current was reduced and very rapid flickering appeared. The open probability $(P_0)$ of this channel was increased by increasing positivity of the potential across the patch membrane, with e-fold increase by 20 mV depolarization, and by increasing the internal $Ca^{2+}$ concentration. These findings are consistent with those of large conductance Ca-activated K channels reported in other tissues. But the shortening of the mean open time by increasing $[Ca^{2+}]_i$, was an unexpected result and one additional closed state which might be arisen from a block of the open channel by Ca binding was suggested. The $P_0-membrane$ potential relationship was modulated by internal pH. Decreasing pH reduced $P_0$. Increasing pH not only increased $P_0$ but also weakened the voltage dependency of the channel opening. The modulation of Ca-activated K channel by pH was thought to be related to the mechanism of regulation of vascular tone by the pH change.

  • PDF

Modulation of Subcellular Ca2+ Signal by Fluid Pressure in Rat Atrial Myocytes

  • Woo Sun-Hee;Morad Martin
    • Biomolecules & Therapeutics
    • /
    • 제14권1호
    • /
    • pp.19-24
    • /
    • 2006
  • Atrial chambers serve as mechanosensory systems during the haemodynamic or mechanical disturbances, which initiates arrhythmia. Atrial myocytes, lacking t-tubules, have two functionally separate sarcoplasmic reticulums (SRs): those at the periphery close to the surface membrane, and those at the cell interior (center) not associated with the membrane. To explore possible role of fluid pressure (FP) in the regulation of atrial local $Ca^{2+}$ signaling we investigated the effect of FP on subcellular $Ca^{2+}$ signals in isolated rat atrial myocytes using confocal microscopy. FP was applied to whole area of single myocyte with pressurized automatic micro-jet (200-400 $mmH_2O$) positioned close to the cell. Application of FP enhanced spontaneous occurrences of peripheral and central $Ca^{2+}$ sparks with larger effects on the peripheral release sites. Unitary properties of single sparks were not altered by FP. Exposure to higher FP often triggered longitudinal $Ca^{2+}$ wave. These results suggest that fluid pressure may directly alter excitability of atrial myocytes by activating $Ca^{2+}$-dependent ionic conductance in the peripheral membrane and by enhancing spontaneous activation of central myofilaments.

Effects of Residual PMMA on Graphene Field-Effect Transistor

  • Jung, J.H.;Kim, D.J.;Sohn, I.Y.;Lee, N.E.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.561-561
    • /
    • 2012
  • Graphene, two dimensional single layer of carbon atoms, has tremendous attention due to its superior property such as fast electron mobility, high thermal conductivity and optical transparency, and also found many applications such as field-effect transistors (FET), energy storage and conversion, optoelectronic device, electromechanical resonators and chemical sensors. Several techniques have been developed to form the graphene. Especially chemical vapor deposition (CVD) is a promising process for the large area graphene. For the electrically isolated devices, the graphene should be transfer to insulated substrate from Cu or Ni. However, transferred graphene has serious drawback due to remaining polymeric residue during transfer process which induces the poor device characteristics by impurity scattering and it interrupts the surface functionalization for the sensor application. In this study, we demonstrate the characteristics of solution-gated FET depending on the removal of polymeric residues. The solution-gated FET is operated by the modulation of the channel conductance by applying a gate potential from a reference electrode via the electrolyte, and it can be used as a chemical sensor. The removal process was achieved by several solvents during the transfer of CVD graphene from a copper foil to a substrate and additional annealing process with H2/Ar environments was carried out. We compare the properties of graphene by Raman spectroscopy, atomic force microscopy(AFM), and X-ray Photoelectron Spectroscopy (XPS) measurements. Effects of residual polymeric materials on the device performance of graphene FET will be discussed in detail.

  • PDF

Pd nanoparticles on poly(amidoamine) dendrimers modified single-walled carbon nanotubes as highly sensitive hydrogen gas sensors

  • Lee, Jun-Min;Lee, Eun-Song-Yi;Jeon, Kye-Jin;Ju, Seong-Hwa;Jung, Yeong-Ri;Kim, Sung-Jin;Lee, Woo-Young
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 춘계학술대회 논문집
    • /
    • pp.93-93
    • /
    • 2009
  • In order to overcome the lack of reactivity with hydrogen gas ($H_2$) and utilize unique properties of Carbon Nano Tubes (CNTs) for the application to hydrogen sensors, there have been intensive works on the surface functionalization of CNTs with various types of nanoparticles including Pd. In the present work, we have investigated the effect of dendrimers and Pd nanoparticles to the hydrogen sensing properties of CNTs by comparing three types of samples: Pd/SWNTs (Sample I), Pd/dendrimer/SWNTs (Sample II) and heat-treated Pd/dendrimers/SWNTs (Sample III). As a result of IV measurement under the $H_2$ and air, sample I was found to have a high sensitivity (25%) to $H_2$, but to have a very slow response time (324 s) and recovery rate. On the other hand, Sample II was found to show much faster response time (3 s) and good recovery rate but lower sensitivity (8.6%) than Sample I which is due to induced dipole moments in the dendrimers. Interestingly, Sample III showed both fast response time (7 s) and high sensitivity (25%), indicating that the pyrolysis of the dendrimers during heat treatment which reduce the distance between the surface of the SWNTs and the functionalized Pd nanoparticles plays a key role in improving the sensitivity. The pyrolysis of the dendrimers in Pd nanoparticle-dendrimer-SWNTs was found to enable a significant electrical conductance modulation upon exposure to extremely low concentrations (10 ppm) of $H_2$ in air. Our results demonstrate that the Pd Nanoparticle-Grafted Single-Walled Carbon Nanotubes(SWNTs) with Dendrimers can be used to detect hydrogen, makingoutstanding properties such as fast response, and recovery time, high sensitivity, low detection limit at room temperature compared with other types of hydrogen sensors.

  • PDF