Browse > Article
http://dx.doi.org/10.5757/ASCT.2018.27.2.35

Redox Reaction Investigation of Graphene Nanoribbon  

Yu, Young-Jun (Department of Physics, Chungnam National University)
Publication Information
Applied Science and Convergence Technology / v.27, no.2, 2018 , pp. 35-37 More about this Journal
Abstract
The redox reaction on graphene nanoribbon (GNR) field effect transistors(FET) has been studied. In detail, upon employing an electrolyte gating, we verified electron transport performance modulation of GNR FET by monitoring conductance variation under oxidation and reduction processes. The conductance enhancement of GNR via removal of PMMA residue on graphene surface during redox cycles was also observed.
Keywords
Graphene; Graphene nanoribbon; Redox; Oxidation; Reduction; Electrolyte;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. R. Goldsmith, J. G. Coroneus, V. R. Khalap, A. A. Kane, G. A. Weiss, and P. G. Collins, Science 315, 77-81 (2007).   DOI
2 S. Sorgenfrei, C. Chiu, R. L. Gonzalez, Y. -J. Yu, P. Kim, C. Nuckolls, and K. L. Shepard, Nature Nanotechnol. 6, 126-132 (2011).   DOI
3 X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, Science 324, 768-771 (2009).   DOI
4 P. Ramesh, M. E. Itkis, E. Bekyarova, F. Wang, S. Niyogi, X. Chi, C. Berger, W. der Heer, and R. C. Haddon, J. Am. Chem. Soc. 132, 14429-14436 (2010).   DOI
5 G. P. Kotchey, B. L. Allen, H. Vedala, N. Yanamala, A. A. Kapralov, Y. Y. Tyurina, J. Klein-Seetharaman, and V. E. Kagan, A. Star, ACS Nano 5, 2098-2108 (2011).   DOI
6 I. Jung, D. A. Dikin, R. D. Piner, and R. S. Ruoff, Nano lett. 8, 4283-4287 (2008).   DOI
7 L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus, and G. W. Flynn, Nano lett. 8, 1965-1970 (2008).   DOI
8 A. B. Kalser, C. Gomez-Navarro, R. S. Sundaram, M. Burghard, and K. Kern, Nano lett. 9, 1787-1792 (2009).   DOI
9 J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, and P. E. Sheehan, Nano lett. 8, 3137-3140 (2008).   DOI
10 L. Weng, L. Zhang, Y. P. Chen, and L. P. Rokhinson, Appl. Phys. Lett. 93, 093107 (2008).   DOI
11 S. Masubuchi, M. Ono, K. Yoshida, K. Hirakawa, and T. Machida, Appl. Phys. Lett. 94, 082107 (2009).   DOI
12 Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. der Heer, P. E. Sheehan, and E. Riedo, Science 328, 328, 1373-1376 (2010).   DOI
13 S. Neubeck, L. A. Ponomarnko, F. Freitag, A. J. M. Giesbers, U. Zeitler, S. V. Morozov, P. Blake, A. K. Geim, and K. S. Novoselov, Small 6, 1469-1473 (2011).
14 I. -S. Byun, D. Yoon, J. S. Choi, I. Hwang, D. H. Lee, M. J. Lee, T. Kawai, Y. -W. Son, Q. Jia, H. Cheong, and B. H. Park, ACS Nano 5, 6417-6424 (2011).   DOI
15 Y. Shao, G. Yin, J. Zhang, and Y. Gao, Electrochem. Acta 51, 5853-5857 (2006).   DOI