• Title/Summary/Keyword: Surface Condition Factor

Search Result 504, Processing Time 0.024 seconds

A Simplified Estimation of Stress Intensity Factor on the Hertzian Contact

  • Jin, Songbo;Kim, Seock-Sam
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.8-11
    • /
    • 2000
  • A surface crack in a semi-infinite body under Hertzian contact was considered. The simplified method used to estimate stress intensity factor K for specimen was extended to the model which is chosen in this paper. Very satisfactory results are obtained comparing with those known and it is proved that the method is more convenient than other methods. The results of the analysis show that due to the presence of $K_I$ for unlubricated condition, mode I fracture is active in the field below the surface and the maximum $K_{I}$ is obtained when the trailing edge of Hertzian contact reaches a position over the crack. The magnitudes of stress intensity factors $K_I$ and $K_Il$ increase with increasing friction forces. For a surface crack perpendicular to the contact surface, the stress intensity factor $K_I$ reaches its maximum value at a depth very close to the surface. Driving forve fer crack initiation and propagation is $K_I$ for unlubricated condition and $K_Il$ for both fluid and boundary lubricated condition.n.

  • PDF

Evaluation of Fracture Strength of Silicon Die with Surface Condition by Ball Breaker Test (볼브레이커시험에 의한 실리콘 다이의 표면조건에 따른 파단강도 평가)

  • Byeon, Jai-Won
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.4
    • /
    • pp.178-184
    • /
    • 2013
  • The effects of thickness and surface grinding condition on the fracture strength of Si wafer with a thickness under $100{\mu}m$ were investigated. Fracture strength was measured by ball breaker test for about 330 dies (size: $4mm{\times}4mm$) per each wafer. For statistical analysis of the fracture strength, scale factor was determined from Weibull plot. Ball breaker fracture strength was observed to increase with decreasing thickness of silicon die. For the silicon dies of different surface conditions, ball breaker fracture strength was high in the order of polished, ground (#4800), and ground (#320 grit) specimen. Probabilistic fracture strength (i.e., scale factor) increased with decreasing surface roughness of silicon die.

A Study on the Machining Characteristics of Co-Cr-Mo Alloy in Turning Process (Co-Cr-Mo 합금의 선삭 가공 특성에 관한 연구)

  • Hong, Kwang-Pyo;Cho, Myeong-Woo;Choi, In-Joon
    • Design & Manufacturing
    • /
    • v.11 no.1
    • /
    • pp.50-54
    • /
    • 2017
  • In this study, researches were conducted as follows. First, as the basic experiment, the cutting speed, feedrate, and the depth of cut were set as the process parameters, and by setting the surface roughness as the factor of measurement for each of the combinations, and the analysis about cutting tendency of the material was conducted by proceeding the turning process of Co-Cr-Mo alloy. Second, by setting the feature of the surface roughness according to the 'turning processing condition' that was confirmed in the previous experiment, and by applying the Taguchi Method, the conditions that influence the features of the surface roughness according to the 'turning processing condition' of Co-Cr-Mo was analyzed, and also by measuring the surface roughness according to each of the 'cutting conditions', the optimal processing condition was generated. As the result of analysis, it was possible to understand that the factor that mostly affects the surface roughness was the cutting speed, followed by the dept of cutting and transfer speed, and as for the optimal processing condition, it was possible to find that the cutting speed was 5,000rpm, and the depth of cut was 0.1mm, and the feedrate was 0.003mm/rev, and the value of the surface roughness at this point is $0.197{\mu}m$.

Application of Rigid Lid Boundary Condition for Three Dimensional Flow Analysis beneath Floating Structure (부유체하부의 3차원 흐름해석을 위한 Rigid lid 경계조건의 적용)

  • Hong, Nam-Seeg
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.55-62
    • /
    • 2012
  • In this paper, the rigid lid boundary condition is applied to simulate the influence of floating structures such as ships or pontoons, and the pressure term in both the momentum equations and continuity equation are modified. The pressure of a floating structure under the free surface is dependent on the draft of the structure, generally called a ship. If the free surface is covered by a floating structure, the free surface cannot move freely. The water level should be fixed, using a rigid lid boundary condition. This boundary condition is implemented by reducing the storage area of the grid cell with a factor between zero and one. The numerical model developed by Hong (2009) is verified through a comparison with experimental results, and the influence of the reduction factor is investigated using the verified numerical model.

Selection of the Optimum Seaming Condition for Spin Drum Using Design of Experiment (실험계획법을 이용한 스핀드럼의 시밍 최적조건 선정)

  • Kim, Eui-Soo;Lee, Jung-Min;Kim, Byung-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1511-1516
    • /
    • 2007
  • Because Seaming process of MPJ (Mechanical Press Joining) has various design factors such as thickness, bending radius, seaming width, caulking press width and the dynamic factor such as multistage plastic working, elastic recovery, residual stress, the optimum conditions can't be easily determined. Using a design of experiment based on the FEM, which has several advantages such as less computing, high accuracy performance and usefulness, this study was performed investigating the interaction effect between the various design factor as well as the main effect of the each design factor during drum MPJ and proposed optimum condition using center composition method among response surface derived from regression equation of simulation-based DOE.

  • PDF

Characteristics of Delamination Factor and Surface Roughness by Drilling Condition for Glass Fiber Reinforced Plastic Composites (유리섬유복합재의 드릴가공조건에 대한 박리지수와 표면조도 특성)

  • Lee, Ok-Kyu;Ahn, Dae-Keon;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.380-385
    • /
    • 2013
  • Characteristics of delamination factor and surface roughness by drilling condition for glass fiber reinforced plastic (GFRP) composites were investigated in this paper. An expression to quantify the delamination factor was induced by using image pixels of the entry and the experimental drilling was accomplished by fabricating several GFRP specimens in condition of minimizing the effect of vibration and heat. A method for measuring 6 points average surface roughness was applied to acquire the more reliable roughness values. The experimental results showed that the delamination factor was decreased as the feed rate was increased and it was also slightly decreased as the cutting speed was increased. Also, it was investigated that the surface roughness at inner surface of drilled holes was increased as the feed rate was increased, whereas the roughness values were not affected by the cutting speed variation.

Prediction of the crack aspect change in twin surface cracks (2개의 대칭표면구열의 구열형상변화 예측)

  • 최용식;김재원
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.65-75
    • /
    • 1992
  • An analytical scheme for predicting the crack aspect pattern of materials which contain twin surface cracks was developed. Fatigue tests were performed on twin surface cracked PMMA plate specimens to obtain the interaction factor accounting for the interference effect of adjacent cracks. Here, the interaction factor is defined as the ratio of the stress intensity factor for twin surface cracks to that for a single surface crack. From the analysis of the fatigue test result, the interaction factor was presented as the ninth-order polynomial expression having a function of dimensionless crack spacing ratio. Then the polynomial expression was incorporated into the prediction program of the crack aspect pattern for twin surface cracked materials. And, the interaction effect and the coalescence condition of adjacent cracks were simplified in the newly developed prediction scheme of the crack aspect pattern. The predicted crack growth pattern using the prediction scheme was compared with test data from PMMA specimen. The predicted pattern agreed well with the test data.

  • PDF

An Experimental Study on the Effect of the Air Temperature on the Air-Side Heat-Transfer Coefficient and the Friction Factor of a Fin-and-Tube Heat Exchanger (외기 온도 변화가 핀-관 열교환기의 공기측 열전달계수와 마찰계수에 미치는 영향에 관한 실험적 연구)

  • Kim, Nae-Hyun;Cho, Honggi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.4
    • /
    • pp.149-158
    • /
    • 2017
  • In general, the air-side j and f factors of evaporators or condensers are obtained through single-design tests performed under air-dry and wet-bulb temperatures. Considering that the indoor or outdoor air temperatures vary significantly during the operation of an air conditioner, it is necessary to confirm that the experimentally-obtained j and f factors are widely applicable under variable air conditions. In this study, a series of tests were conducted on a two-row slit-finned heat exchanger to confirm the applicability. The results showed that, for the dry-surface condition, the changes of the tube-side water temperature, water-flow rate, and air temperature had virtually no effect on the air-side j and f factors. For the wet condition, however, the f factor was significantly affected by these changes; contrarily, the j factor is relatively independent regarding this change. The formulation of the possible reasoning is in consideration of the condensation behavior underneath the tube. The wet-surface j and f factors are larger than those of the dry surface, with a larger amount for the f factor.

A Study on the Analysis of Scaling Failure Cause in L-Shoulder Concrete Structure (L형측구 콘크리트 구조물의 표면박리파손 원인분석에 관한 연구)

  • Jeon, Sung Il;Nam, Jeong Hee;Ahn, Sang Hyeok;An, Ji Hwan
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.27-37
    • /
    • 2014
  • PURPOSES : The purpose of this study is to verify the causes of surface scaling at L-shoulder concrete structure. METHODS : From the literature reviews, mechanisms of frost damage were studied and material properties including strength, air void, spacing factor and scaling resistance of L-shoulder concrete structure were analyzed using core specimens taken by real fields. RESULTS : The spacing factor of air void has relatively high correlation of surface conditions : lower spacing factor at good surfacing condition and vice versa. If the compressive strength is high, even thought spacing factor does not reach the threshold value of reasonable durability, the surface scaling resistance shows higher value. Based on these test results, the compressive strength also provide positive effect on the surface scaling resistance. CONCLUSIONS : The main causes of surface scaling of L-shoulder could be summarized as unsuitable aid void amount and poor quality of air void structure. Secondly, although the compressive strength is not the governing factor of durability, but it shows the positive effect on the surface scaling resistance.

Three-dimensional simplified slope stability analysis by hybrid-type penalty method

  • Yamaguchi, Kiyomichi;Takeuchi, Norio;Hamasaki, Eisaku
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.947-955
    • /
    • 2018
  • In this study, we propose a three-dimensional simplified slope stability analysis using a hybrid-type penalty method (HPM). In this method, a solid element obtained by the HPM is applied to a column that divides the slope into a lattice. Therefore, it can obtain a safety factor in the same way as simplified methods on the slip surface. Furthermore, it can obtain results (displacement and strain) that cannot be obtained by conventional limit equilibrium methods such as the Hovland method. The continuity condition of displacement between adjacent columns and between elements for each depth is considered to incorporate a penalty function and the relative displacement. For a slip surface between the bottom surface and the boundary condition to express the slip of slope, we introduce a penalty function based on the Mohr-Coulomb failure criterion. To compute the state of the slip surface, an r-min method is used in the load incremental method. Using the result of the simple three-dimensional slope stability analysis, we obtain a safety factor that is the same as the conventional method. Furthermore, the movement of the slope was calculated quantitatively and qualitatively because the displacement and strain of each element are obtained.