• Title/Summary/Keyword: Surface Change

Search Result 6,705, Processing Time 0.032 seconds

The Effect of Etching on Low-stress Mechanical Properties of Polypropylene Fabrics under Helium/Oxygen Atmospheric Pressure Plasma

  • Hwang, Yoon J.;An, Jae Sang;McCord, Marian G.;Park, Shin Woong;Kang, Bok Choon
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.145-150
    • /
    • 2003
  • Polypropylene nonwoven fabrics were exposed to He/$O_2$ atmospheric pressure glow discharge plasma. Surface chemical analysis and contact angle measurement revealed the surface oxidation by formation of new functional groups after plasma treatment. Weight loss (%) measurement and scanning electron microscopy analysis showed a significant plasma etching effect. It was investigated in low-stress mechanical properties of the fabrics using Kawabata Evaluation System (KES-FB). The surface morphology change by plasma treatment increased surface friction due to an enhancement of fiber-to-fiber friction, resulting in change of other low-stress mechanical properties of fabric.

Surface Property of PET Fabric Treated with $CF_4$ Plasma and $C_2F_6$ Plasma (플루오르 화합물을 플라즈마 처리한 PET 직물의 표면특성)

  • 김태년;모상영
    • Textile Coloration and Finishing
    • /
    • v.11 no.1
    • /
    • pp.25-33
    • /
    • 1999
  • PET fabric was grafted with $CF_4$ or $C_2F_6$ plasmas generated by glow discharge. The water repellency of plasma-treated fabrics were evaluated with contact angle meter. The change in surface morphologies was observed by SEM, and the change of surface chemical characteristics were analyzed by FT-IR, ESCA and microchemical analysis technique. The results obtained are as follows : 1) The contact angle of plasma-treated fabric was over $150^\circ{C}$. 2) It was observed by SEM that the surface of treated substrate was over coated with thin film formed by the fluorocarbon plasma treatment. 3) According to ESCA analysis, there were prevailing -CHF-, $-CF_2$- and a little $-CF_3$ components on fluorocarbon plasma treated substrate. -CHF- and $-CF_2$- components were reduced by washing, and $-CF_2$- component was recovered by heat treatment. 4) In consideration of quantitative analysis of fluorine and F/C ratio by ESCA, we found that fluorination reached to the inner of substrate.

  • PDF

An Empirical Approach to determine Road-Surface Conditions for Anti-Lock Brake System (Anti-Look Brake Systern을 위한 경험적 노면판단 방법)

  • 박병량;양순용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.125-125
    • /
    • 2000
  • An Empirical approach to determine a road-surface condition is presented The road-surface condition thus provided includes the detection of not only friction coefficient, but also abrupt surface-profile changes such as pitfalls and bumpers The former plays a key role in establishing the appropriate control strategy, while the latter allows to minimize unnecessary brake intervention induced by the aforementioned jut. In this paper, we use an empirically chosen variable, namely. the time-rate of change of vehicle speed estimated from the point where ABS engaged to the point where measurement taken Experimental results shoe that the proposed method is effective to infer various control variables critical for the control of ABS.

  • PDF

Analysis of Dynamic Characteristics of Contact Slider Over Practical Disk Surface (실제 디스크 표면 데이터에 대한 접촉 슬라이더의 동적 안정성 해석)

  • 박경수;전정일;박영필;박노철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.160-165
    • /
    • 2002
  • The flying height of contact slider is determined by vertical and pitching motions. This paper performed the computer simulation for flying height change of contact slider. It is changed by many parameters, contact stiffness. contact damping, all bearing stiffness ratio and so on. So computer simulation analysis is performed for knowing for what change of these parameters influences in flying height of contact slider. The practical recording zone surface is gotten by using SPM. In recording zone, flying height is simulated for each parameter. the settling time which the flying height of contact slider is lower than 10nm is analyzed over practical disk surface for changing each parameter. Through these results, the contact slider can be analyzed for more accuracy dynamic characteristics.

  • PDF

Detection of urban expansion and surface temperature change using Landsat imagery (Landsat 영상을 이용한 도시확장과 지표온도 변화 탐지)

  • 손홍규;곽은주;방수남;박완용
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.161-166
    • /
    • 2004
  • Seoul has experienced a rapid urban expansion over the past three decades. This paper reports an investigation into the application of Landsat imagery for detecting urban growth and assessing its impact on surface temperature in the region. Land cover/use change detection w3s carried out by using Landsat data. The results revealed a notable urban growth in the study area. This urban expansion had raised surface radiant temperature in the urbanized area. The method using remote sensing data based on GIS was found to be effective in monitoring and analysing urban growth and in evaluating urbanization impact on surface temperature.

  • PDF

CRITICAL SPEED ANALYSIS OF JUDDERING DUE TO CHANGE IN SURFACE TEMPERATURE OF DISK BRAKE

  • Kim, M.G.;Cho, C.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.697-702
    • /
    • 2006
  • The change in the critical speed due to surface temperature of automotive disk brakes may be analyzed both theoretically as well as experimentally. Juddering of disk brakes is closely related to its critical speed. In analyzing the critical speed, if $\sigma$ is positive, Disk develops TEI(Thermo-Elastic Instability) resulting in juddering in disk brakes. And $\sigma$ is affected not only by the critical speed but also by the initial temperature of disk surface. As the initial temperature of the disk surface rises, the critical speed decreases and juddering is developed more easily. Also, when hot spots are developed by TEI, they show large temperature difference in small local range.

Coolant Path Geometry for Improved Electrostatic Chuck Temperature Variation (정전척 온도분포 개선을 위한 냉각수 관로 형상)

  • Lee, Ki-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.21-23
    • /
    • 2011
  • Uniformity of plasma etching processes critically depends on the wafer temperature and its distribution. The wafer temperature is affected by plasma, chucking force, He back side pressure and the surface temperature of ESC(electrostatic chuck). In this work, 3D mathematical modeling is used to investigate the influence of the geometry of coolant path and the temperature distribution of the ESC surface. The model that has the coolant path with less change of the cross-sectional area and the curvature shows low standard deviation of the ESC surface temperature distribution than the model with the coolant path of the larger surface area and more geometric change.

A Study on the Formation of Interface and the Thin Film Microstructure in TiN Deposited by Ion Plating (이온플레팅에 의한 TiN 증착중 계면형성과 박막 미소조직에 관한 연구)

  • 여종석;이종민;한봉희
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.2
    • /
    • pp.73-79
    • /
    • 1991
  • Recent studies son surface coatings have shown that the change of physical, chemical and crystallographic structure analysed and observed according to the deposition process variables has the effects on the resultant film properties. Under the same preparation condition conditions of the substrate and process variables, physical morphology variations characterized by substrate temperature and bias which offect the surface mobility of adatom and adhesion variations related to the formation of Ti interlayer were considered in the present study. Microhardness showed the highest value around 40$0^{\circ}C$ of the substrate temperature and increased with the substrate bias. Adhesion was improved with the increase of substrate temperature and bias. An interlayer of pure titanium formed prior to deposition of TiN improves the adhesion at its optimum thickness. These results were explained by the change of physical morphology and phase analysis.

  • PDF

The Influence of Dry Treatments on the Surface Degradation and Dielectric Properties in Fiber Reinforced Plastics (건식 열화처리가 FRP의 표면 열화와 유전특성에 미치는 영향)

  • 이백수;이덕출;정의남;유도현;김종택
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.88-95
    • /
    • 1998
  • In this paper, we investigated the change of wettability, surface potential decay and dielectric properties caused by ultraviolet-treated, thermal-treated and discharge-treated FRP(fiber reinforced plastics) respectively for finding out the influence of dry treatments effected to electrical characteristics on the surface of polymer composites. For the change of wettability, the contact angle of thermal-treated specimen with the high temperature of $200^{\circ}C$ increased. But that of UV-treated and discharge- treated specimen decreased. The characteristic of surface potential decay shows the tendency of the remarkable decrease on UV-treated and discharge-treated specimens, but no difference on thermal-treated specimen compared with untreated one. Also, for the dielectric properties, it shows the increase at large on the treated specimens and especially, the remarkable increase on thermal-treated one.

  • PDF

SURFACE ROUGHNESS EFFECTS ON THE COERCIVITY OF THIN FILM HEADS

  • Kim, Hyunkyu;Horvath, M. Pardavi
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.663-666
    • /
    • 1995
  • The domain wall motion coercivity, $H_{c}$, of magnetic materials arises from the dependence of the wall energy on localized changes in material parameters (magnetization, anisotropy, exchange energy densities). However, in an otherwise perfectly homogeneous material, the domain wall energy might change due to the change in the volume of the wall versus the wall position. Thus, any surface roughness contributes to the coercivity. Assuming different two-dimensional surface profiles, characterized by average wavelengths ${\lambda}_{x}$ and ${\lambda}_{y}$, and relative thickness variations dh/h, the coercivity due to the surface roughness has been calculated. Compared to the one dimensional case, the 2D coercivity is reduced. Depending on the ratio of ${\lambda}$ to the domain wall width, $H_{c}$ has a maximum around 2, and increasing with dh/h. With the decreasing thickness of the thin film and GMR heads, it might be the domain factor in determining the coercivity.

  • PDF