• Title/Summary/Keyword: Surface Area of Plasma

Search Result 258, Processing Time 0.031 seconds

Effect of Plasma Area on Frequency of Monostatic Radar Cross Section Reduction

  • Ha, Jungje;Shin, Woongjae;Lee, Joo Hwan;Kim, Yuna;Kim, Doosoo;Lee, Yongshik;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.153-158
    • /
    • 2017
  • This work reports on the effect of plasma area on the frequency characteristics of the monostatic radar cross section (RCS) of a square metallic plate. A dielectric barrier discharge (DBD) plasma actuator consisting of 10 rings is proposed. The actuator is fabricated in three different configurations such that only three inner rings, seven inner rings, and all rings can be biased. By applying an 18-kV bias at 1 kHz, the three types of DBD actuators generate plasma with a total area of 16.96, 36.74, and $53.69cm^2$, respectively, in a ring or circular form. The experimental results reveal that when the DBD actuator is placed in front of a $20mm{\times}20cm$ conducting plate, the monostatic RCS is reduced by as much as 18.5 dB in the range of 9.41-11.65 GHz. Furthermore, by generating the plasma and changing the area, the frequency of maximum reduction in the monostatic RCS of the plate can be controlled. The frequency is reduced by nearly 20% in the X band when all rings are biased. Finally, an electromagnetic model of the plasma is obtained by comparing the experimental and full-wave simulated results.

Reduced Graphene Oxide Field-effect Transistor as a Transducer for Ion Sensing Application

  • Nguyen, T.N.T.;Tien, Nguyen Thanh;Trung, Tran Quang;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.562-562
    • /
    • 2012
  • Recently, graphene and graphene-based materials such as graphene oxide (GO) or reduced graphene oxide (R-GO) draws a great attention for electronic devices due to their structures of one atomic layer of carbon hexagon that have excellent mechanical, electrical, thermal, optical properties and very high specific surface area that can be high potential for chemical functionalization. R-GO is a promising candidate because it can be prepared with low-cost from solution process by chemical oxidation and exfoliation using strong acids and oxidants to produce graphene oxide (GO) and its subsequent reduction. R-GO has been used as semiconductor or conductor materials as well as sensing layer for bio-molecules or ions. In this work, reduced graphene oxide field-effect transistor (R-GO FET) has been fabricated with ITO extended gate structure that has sensing area on ITO extended gate part. R-GO FET device was encapsulated by tetratetracontane (TTC) layer using thermal evaporation. A thermal annealing process was carried out at $140^{\circ}C$ for 4 hours in the same thermal vacuum chamber to remove defects in R-GO film before deposition of TTC at $50^{\circ}C$ with thickness of 200 nm. As a result of this process, R-GO FET device has a very high stability and durability for months to serve as a transducer for sensing applications.

  • PDF

Performance Analysis of A Variable-Spacing Cesium Thermionic Energy Converter (열전변환 장치의 특성 분석에 대한 연구)

  • Lee, Deuk-Yong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.1085-1094
    • /
    • 1992
  • A variable-spacing cesium thermionic energy conversion test station is designed and fabricated for the study of power generation. The diode is in the form of a guard-ringed plane-parallel geometry in which a polycrystalline rhenium emitter of 2 cmS02T area faces a radiation-cooled polycrystalline rhenium collector of 1.9 cmS02T area. The emission of plasma from heated refractory electrode metal is the driving reaction in the direct conversion of heat to electricity by thermionic energy conversion. The plasma is produced from electrons and positive ions formed simultaneously by thermionic emission and surface ionization of cesium atoms incident on the hot emitter from the cesium vapor in the diode. And high plasma density causes plasma multiplication within the gap due to volume ionization that results in high power output. The variation of the saturation current of a Knudsen converter is investigated at an emitter-collector gap of 0.1 mm and an emitter temperatures. A maximum power output of 13.47 watta/cmS02T is observed at a collector temperature of 963 K and a cesium reservoir temperature of 603 K.

Effect of a Laser Ablation on High Voltage Discharge Plasma Area for Carbon Nitride Film Deposition (고전압 방전 플라즈마에 의한 질화탄소 박막 증착 시 플라즈마 영역에 가한 레이저 애블레이션의 효과)

  • 김종일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.6
    • /
    • pp.551-557
    • /
    • 2002
  • Carbon nitride films have been deposited on Si(100) substrate by a high voltage discharge plasma combined with laser ablation in a nitrogen atmosphere. The films were grown both with the without the presence of an assisting focused Nd:YAG laser ablation. The laser ablation of the graphite target leads to vapor plume plasma expending into th ambient nitrogen arc discharge area. X-ray photoelectron spectroscopy and Auger electron spectroscopy were used to identify the binding structure and the content of the nitrogen species in the deposited films. The nitrogen content of the films was found to increase drastically with an increase of nitrogen pressure. The surface morphology of the films was studied using a scanning electron microscopy. Data of infrared spectroscopy and x-ray photoelectron spectroscopy indicate the existence of carbon-nitrogen bonds in the films. The x-ray diffraction measurements have also been taken to characterize the crystal properties of the obtained films.

A Study on the Plasma Treatment Effect of Metal Fibersusing Micromechanical Technique (미세역학적 실험법에 의한 금속섬유의 플라즈마 처리효과에 관한 연구)

  • MiYeon Kwon;Seung Goo Lee
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.122-129
    • /
    • 2022
  • In this study, the hydrophilicity of the metal fiber is improved by introducing an oxygen-containing functional group to the fiber surface after treatment of the metal fiber using the oxygen plasma treatment time as an experimental variable. For the surface modification of metal fibers, changes in surface properties before and after plasma treatment were observed using SEM and x-ray photoelectron spectroscopy (XPS). In order to observe the effect of the plasma treatment time on the surface of the metal fiber, the change in contact angle of the metal fiber with respect to a polar solvent and a non-polar solvent was measured. After calculating the change in surface free energy using the measured contact angle, the contact angle and the surface free energy for metal fibers before and after oxygen plasma treatment were compared, and the correlation with the adhesion work was also considered. The microdroplet specimens were prepared to investigate the effect of surface changes of these metal fibers on the improvement of shear strength at the interface when combined with other materials and the interfacial shear strength was measured, and the correlation with the adhesion work was also identified. Therefore, the oxygen plasma treatment of the metal fiber results in an increase in the physical surface area on the fiber surface and a change in contact angle and surface energy according to the introduction of the oxygen-containing functional group on the surface. This surface hydrophilization resulted in improving the interfacial shear strength with the polymer resin.

The Effect of Activated Nitrogen Species for Diffusion Rate during a Plasma Nitriding Process (플라즈마질화에서 발생기 질소와 질화 속도에 관한 연구)

  • Kim, Sang-Gweon;Kim, Sung-Wan;Brand, P.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.3
    • /
    • pp.150-155
    • /
    • 2010
  • Generally, plasma nitriding process has composed with a nitriding layer within glow discharge region occurred by energy exchange. The dissociations of nitrogen molecules are very difficult to make neutral atoms or ionic nitrogen species via glow discharge area. However, the captured electrons in which a double-folded screen with same potential cathode can stimulate and come out some single atoms or activated ionic species. It was showed an important thing that is called "hat is a dominant component in this nitriding process?" in plasma nitriding process and it can take an effective species for without compound layer. During a plasma nitriding process, it was able to estimate with analyzing and identification by optical emission spectroscopy (OES) study. And then we can make comparative studies on the nitrogen transfer with plasma nitriding and ATONA process using plasma diagnosis and metallurgical observation. From these observations, we can understand role of active species of nitrogen, like N, $N^+$, ${N_2}^+$, ${N_2}^*$ and $NH_x$-radical, in bulk plasma of each process. And the same time, during DC plasma nitriding and other processes, the species of FeN atom or any ionic nitride species were not detected by OES analyzing.

Effect of Atmospheric Plasma Treatments on Mechanical Properties of VGCF/Epoxy

  • Khuyen, Nguyen Quang;Kim, Jin-Bong;Kim, Byung-Sun;Lee, Soo
    • Advanced Composite Materials
    • /
    • v.17 no.2
    • /
    • pp.167-175
    • /
    • 2008
  • Vapor grown carbon fibers (VGCF) were treated with atmospheric plasma enhancing the surface area in order to improve the bonding to the matrix in epoxy composites. The changes in the mechanical properties of VGCF/epoxy nanocompostes, such as tensile modulus and tensile strength were investigated in this study. VGCF with and without atmospheric plasma treatment for surface modification were used in this investigation. The interdependence of these properties on the VGCF contents and interfacial bonding between VGCF/epoxy matrix were discussed. The mechanical properties of atmospheric plasma treated (APT) VGCF/epoxy were compared with raw VGCF/epoxy. The tensile strength of APT VGCF/epoxy nanocomposites showed higher value than that of raw VGCF. The tensile strength was increased with atmospheric plasma treatment, due to better adhesion at VGCF/epoxy interface. The tensile modulus of raw VGCF and APT VGCF/epoxy matrix were of the similar value. The dispersion of the VGCF was investigated by scanning electron microscopy (SEM), SEM micrographs showed an excellent dispersion of VGCF in epoxy matrix by ultrasonic method.

Bridge-type formation of iridium-catalyzed carbon nanofibers across the Gap on MgO substrate and their electrical properties

  • Kim, Kwang-Duk;Kim, Sung-Hoon;Kim, Nam-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.5
    • /
    • pp.198-202
    • /
    • 2006
  • We could achieve the bridge-type formation of the iridium-catalyzed carbon nanofibers across the gap on the MgO substrate using microwave plasma enhanced chemical vapor deposition method. On the plane surface area of the MgO substrate, the iridium-catalyzed carbon nanofibers were grown as a lateral direction to the substrate. The bridge-type formation and/or the lateral growth of the iridium-catalyzed carbon nanofibers were interconnected with each other. Finally, they could form an entangled network having the bridge-type formation of the carbon nanofibers across the gap on the substrate and the laterally-grown carbon nanofibers on the plane surface area of the substrate. The entangled network showed the semiconductor electrical characteristics.

Performance Enhancement due to Oxygen Plasma Treatment on the Gate Dielectrics of OTFTs (게이트 절연막의 $O_2$플라즈마 처리에 의한 펜타센 OTFT의 성능 개선)

  • 이명원;김광현;허영헌;안정근
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.7
    • /
    • pp.494-498
    • /
    • 2003
  • In this paper, the plasma treatment on gate surface has been applied prior to deposition of pentacene and the effects on performance were investigated. The Plasma treatment produced the mobility of 0.05$\textrm{cm}^2$/V.sec which is 10 times larger than the non-treated. The resistance was also reduced from 400K$\Omega$ to 50K$\Omega$. In addition, the standard deviation of performance parameters variation was reduced with the plasma exposure time, which implies that plasma treatment makes the gate surface states be uniform across the whole wafer area. The performance parameters were increased with the exposure time up to 5min, after which they degraded again. Therefore, the optimal exposure time was found to be 5min.