• Title/Summary/Keyword: Surface Angle

Search Result 4,254, Processing Time 0.029 seconds

Experimental study on the influence of heating surface inclination angle on heat transfer and CHF performance for pool boiling

  • Wang, Chenglong;Li, Panxiao;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.;Deng, Jian
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.61-71
    • /
    • 2022
  • Pool boiling heat transfer is widely applied in nuclear engineering fields. The influence of heating surface orientation on the pool boiling heat transfer has received extensive attention. In this study, the heating surface with different roughness was adopted to conduct pool boiling experiments at different inclination angles. Based on the boiling curves and bubble images, the effects of inclination angle on the pool boiling heat transfer and critical heat flux were analyzed. When the inclination angle was bigger than 90°, the bubble size increased with the increase of inclination angle. Both the bubble departure frequency and critical heat flux decreased as the inclination angle increased. The existing theoretical models about pool boiling heat transfer and critical heat flux were compared. From the perspective of bubble agitation model and Hot/Dry spot model, the experimental phenomena could be explained reasonably. The enlargement of bubble not only could enhance the agitation of nearby liquid but also would cause the bubble to stay longer on the heating surface. Consequently, the effect of inclination angle on the pool boiling heat transfer was not conspicuous. With the increase of inclination angle, the rewetting of heating surface became much more difficult. It has negative effect on the critical heat flux. This work provides experimental data basis for heat transfer and CHF performance of pool boiling.

Radiological Analysis of the Degenerative Arthritis of the Ankle (족관절 퇴행성 관절염의 방사선학적 분석)

  • Lee, Woo-Chun;Kang, Yeong-Hun
    • Journal of Korean Foot and Ankle Society
    • /
    • v.9 no.2
    • /
    • pp.135-139
    • /
    • 2005
  • Purpose: This study was performed to investigate the radiological characteristics of the degenerative arthritis of the ankle using the standing radiographs. Materials and Methods: From June 2001 to May 2005, 36 patients (56 ankles) who were treated for osteoarthritis of ankle were analysed. Angle of tibial shaft and tibial joint surface on AP view (TSA), angle of tibial joint surface on lateral view (TLS), tibial and medial malleolus angle (TMM) and talo-1st metatarsal angle were checked on standing radiograph. The patients with medial joint and total joint involvement were categorized into three stages according to the location of involvement. The degree of joint space narrowing was categorized into two groups. Results: There were no significant differences in TSA, TLS, TMM and talo-1st metatarsal angle with regard to the stage of arthritis. However, the difference between the less severe group and the severe group existed. Conclusion: Angular deformity was not correlated with stage, but correlated with severity. The deformity of distal tibial articular surface does not seem to be a cause of primary osteoartiritis, but rather a result from it.

  • PDF

Effect of Incidence Angle on Turbine Blade Heat Transfer Characteristics (II) - Blade Surface - (입사각 변화에 따른 터빈 블레이드에서의 열전달 특성 변화 (II) - 블레이드 표면 -)

  • Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.357-366
    • /
    • 2007
  • The present study investigated local heat/mass transfer characteristics on the surface of the rotating turbine blade with various incidence angles. The experiments are conducted in a low speed annular cascade with a single stage turbine. The blade has a flat tip with the mean tip clearance of 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. At design condition, the inlet Reynolds number is $Re_c=1.5{\times}10^5$ which results in the blade rotation speed of 255.8 rpm. Also, the effect of off-design condition is examined with various incidence angles between $-15^{\circ}$ and $+7{\circ}$. The results indicated that the incidence angle has significant effects on the blade surface heat transfer. In mid-span region, the laminar separation region on the pressure side is reduced and the laminar flow region on the suction side shrinks with increasing incidence angle. Near the tip, the effect of tip leakage flow increases in span wise and axial directions as the incidence angle decreases because the tip leakage flow is formed near the suction side surface. However, the effect of tip leakage flow is reduced with positive incidence angle.

A Study on the Anisotropic Flow Characteristics of Droplets on Rice Leaf Surface (벼 잎 표면에서 액적의 이방성 흐름 특성에 관한 연구)

  • Kim, Tae Wan
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.251-255
    • /
    • 2017
  • In this study, we aimed to clarify the wettability and anisotropic flow characteristics of rice leaves as a basic study for engineering applications of anisotropic flow characteristics of rice leaf surface. To investigate the surface structure of rice leaf, the micro grooves and asperities of rice leaves were analyzed and quantified by scanning electron microscope, Confocal laser scanning microscopy, and stylus profilometer. The analysis of the structure of rice leaf surface confirmed that asymmetrical cone - like protrusions in leaf veins were inclined toward the leaf tip. The static contact angle test showed that the contact angle at the midline vein or leaf vein location where the micropapilla is concentrated is about $20^{\circ}$ higher than the leaf blade position. The contact angles of fresh and dried rice leave were also compared. The dried rice leaves showed a contact angle of about $5^{\circ}$ to $15^{\circ}$ higher than that of fresh leaves, suggesting that the volume of the protrusions decreased as the water was removed, thus reducing the contact area with the droplet. In the contact angle history test the hysteresis in the leaf tip direction was found to be much lower than that in the leaf petiole direction. This results can be explained that asymmetrical cone - like protrusions had a significant effect on the droplet flow characteristics through contact angle hysteresis experiment.

Wettability Characteristics of the Laser Grooved Surfaces (Laser Groove 표면의 젖음 특성에 관한 연구)

  • Jang, Mu Yeon;Kim, Tae Wan
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.294-299
    • /
    • 2019
  • Most previous studies on water repellent surfaces using lasers rely on the use of pico- or femtosecond lasers. However, in industrial application, these methods have the disadvantages of high cost and low efficiency. In this study, we implement a hydrophobic surface using a high-power general-purpose diode laser. We have fabricated the microsurface using laser groove processing technology, and we present the correlation of wettability characteristics with space and width. The metal material is stainless steel (SUS 304), and the groove height during laser processing is set to $30{\mu}m$ to evaluate the wettability based on the gap and width of various grooves. Results show that the contact angle of the groove-shaped surface is increased by $40^{\circ}$ or more as compared with the surface without patterning, and the contact angle in the parallel direction is greater than that in the perpendicular direction. Results from contact angle hysteresis measurement experiments show that the groove width has a greater influence on the contact angle history than does the gap between grooves. In addition, the coating reveals that the contact angle can be increased using a chemical method and that the laser grooving process can further improve the wetting properties of the surface.

Evaluation of Cutter Orientations in 5-Axis High Speed Milling of Turbine Blade (터빈블레이드의 5축 고속가공에서 가공경로와 공구기울임 방향의 선정)

  • 임태순;이유하;이득우;김정석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.155-160
    • /
    • 2002
  • Recently, the development of aerospace and automobile industries has brought new technological challenges, rebated to the growing complexity of products and the new geometry of the models. High speed milling with a 5-Axis milling machine has been widely used fur 3D sculptured surface parts. When turbine blades are machined by a 5-axis milling, their thin and cantilever shape causes vibrations, deflections and twists. Therefore, the surface roughness and the waviness of the workpiece are not good. In this paper, the effects of cutter orientation and the lead/tilt angle used to machine turbine blades with a 5-axis high speed ball end-milling were investigated to improve geometric accuracy and surface integrity. The experiments were performed using a lead/tilt angle of 15$^{\circ}$ to the workpiece with four cutter directions such as horizontal outward, horizontal inward, vertical outward, and vortical inward directions. Workpiece deflection, surface roughness and the machined surface were all measured with various cutter orientations such as cutting directions, and lead/tilt angle. The results show that the best cutting strategy for machining turbine blades with a 5-axis milling is horizontal inward direction with a tilt angle.

  • PDF

Development of Surface Treatment for Hydrophobic Property on Aluminum Surface (알루미늄의 발수 표면처리 기술 개발)

  • Byun, Eun-Yeon;Lee, Seung-Hun;Kim, Jong-Kuk;Kim, Yang-Do;Kim, Do-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.4
    • /
    • pp.151-154
    • /
    • 2012
  • A hydrophobic surface has been fabricated on aluminum by two-step surface treatment processes consisting of structure modification and surface coating. Nature inspired micro nano scale structures were artificially created on the aluminum surface by a blasting and Ar ion beam etching. And a hydrophobic thin film was coated by a trimethylsilane ($(CH_3)_3SiH$) plasma deposition to minimize the surface energy of the micro nano structure surface. The contact angle of micro nano structured aluminum surface with the trimethylsilane coating was $123^{\circ}$ (surface energy: 9.05 $mJ/m^2$), but the contact angle of only trimethylsilane coated sample without the micro nano surface structure was $92^{\circ}$ (surface energy: 99.15 $mJ/m^2$). In the hydrophobic treatment of aluminum surface, a trimethylsilane coated sample having the micro nano structure was more effective than only trimethylsilane coated sample without the micro nano structure.

Preliminary Study on the Effects of Out-of-Plane Deposition Angle on Product Characteristics of a UV Photo-Curing Process (UV 광경화 공정에서 평면 외 적층 경사각에 따른 제품 특성 변화에 관한 기초 연구)

  • Jang, Yong-Hun;Ahn, Dong-Gyu;Song, Jae-Guk;Kim, Dong-In;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.65-72
    • /
    • 2017
  • The goal of this paper is to investigate the effects of out-of-plane deposition angle on product characteristics of a UV photo-curing process. Specimens are manufactured from a commercialized UV photo-curing machine, the NOBEL V1.0. The influence of the out-of-plane deposition angle of the specimen on surface characteristics, including morphology of the sloped surface, pick-to-pick distance of convex region, and roughness of the sloped surface, is examined via the observation of the sloped surface. In addition, the influence of the radius of curvature of the specimen on the surface roughness of the sloped surface is evaluated. The effects of the out-of-plane deposition angle on impact strength of specimens are investigated via Izod impact experiments. Finally, we discuss the influence of the out-of-plane deposition angle on failure characteristics of specimens for impact loads.

Comparison of the Joint Position Sense at Knee Joint According to Surface Conditions (지지 면 조건에 따른 무릎관절의 관절 위치 재현능력 비교)

  • Hong, Young-Ju;Weon, Jong-Hyuck;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.14 no.3
    • /
    • pp.90-96
    • /
    • 2007
  • The purpose of this study was to compare the joint position sense at the knee joint at 3 different surface conditions by using the active knee joint angle reproduction test in the standing position. Twenty healthy volunteers (10 males and 10 females) age 20~29 years were recruited for this study. The knee joint position senses were assessed at three different surface conditions: on the floor (stable condition), TOGU (soft condition), and seat fit (unstable condition) in a closed kinetic chain. Testing orders were selected randomly. The absolute angle error was defined as the absolute difference between target angles ($30^{\circ}{\sim}45^{\circ}$ knee flexion) and subject perceived angle of the knee flexion. One way ANOVA was used to compare the absolute angle of error among 3 different conditions. The Independent t-test was used to compare the absolute angle of error between male and female. The error angles were significantly different among surface conditions ($1.3^{\circ}{\pm}1.2^{\circ}$ for the floor, $2.1^{\circ}{\pm}0.9^{\circ}$ for the TOGU, and $4.4^{\circ}{\pm}1.8^{\circ}$ for the seat fit, p<.05). There was no significant difference in error angle between male and female. In conclusion, the joint position sense of the knee joint in the closed kinetic chain decreased at unstable surface conditions. The result of this study indicates that surface conditions should be considered when assessing and training the joint position sense of the knee joint in clinical setting.

  • PDF

Effects of Added Silicone Oils on the Surface Hydrophobicity of Silicone Rubber (실리콘 고무의 소수성에 미치는 첨가된 실리콘 오일의 영향)

  • Han Dong-Hee;Cho Han-Goo;Kang Dong-Pll;Min Kyung-Eun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.46-51
    • /
    • 2006
  • This paper reports on the effects of silicone oils, used as processing agents, on the recovery of hydrophobicity of silicone rubber. The recovery of hydrophobicity was evaluated by the measuring the contact angle, the surface electrical resistance and SEM. Here, we formed artificial contamination on the surface of samples, which scratched by sand papers and alumina powders. There was small recovery of hydrophobicity on the surface of SIR-A that silicone oil was not added. In both oil-added samples, SIR-B and SIR-C, recovery of hydrophobicity was achieved greatly. The surface of SIR-C showed that a lot of silicone oil was observed due to migration of oil, relatively in comparison with SIR-B. The tendency of recovery of hydrophobicity expressed by contact angle was in a good agreement with electrical property as determined by surface resistivity.