• Title/Summary/Keyword: Surface Adhesion

Search Result 2,054, Processing Time 0.036 seconds

Characterization of Dacrotized Bolts (다크로 방식 처리된 볼트의 특성 평가)

  • Yang, Chi-Hoon;Ko, Jeong;Kim, Dae-Yong
    • Journal of Applied Reliability
    • /
    • v.1 no.2
    • /
    • pp.95-108
    • /
    • 2001
  • To enhance the corrosion resistance of a bolt by surface treatment, dacrotization was considered as a substitute for phosphate coating which is widely used for general applications. In this study, comparisons were made among 5 different kinds of surface treatments including dacrotization and phosphate coating with respect to corrosion resistance, adhesion property with painting, and preload when tightened. The result shows that the dacrotized and surface-stabilized bolt is much superior in every aspects studied herein to others. An excellent corrosion resistance and a fairly good adhesion property with painting were achieved in the dacrotized and surface-stabilized bolt. When tightened at the same torque, the amount of preload and its deviation of dacrotized and surface-stabilized bolt were comparable with those of phosphate coated bolt.

  • PDF

Effect of Nitrogen Gas Pressure on the Property of TiN-Coated Layer of High Speed Steel by Arc ion Plating (AIP 법에서 질소가스 압력이 고속도강의 TiN 코팅층 성질에 미치는 영향)

  • Kim, Hae-Ji;Joun, Man-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.124-130
    • /
    • 2008
  • The effect of nitrogen gas pressure in arc ion plating on surface properties of the TiN-coated high speed steel(SKH51) is presented in this paper. The surface roughness, micro-particle, micro-hardness, coated thickness, atomic distribution of TiN, and adhesion strength are measured fur various nitrogen gas pressures. It has been shown that the nitrogen gas pressure has a considerable effect on the surface roughness, adhesion strength, atomic distribution of TiN, and surface deposition of TiN of the high speed steels but that it has little influence on the micro-hardness and coated thickness.

Quantitative Analysis of Growth of Cells on Physicochemically Modified Surfaces

  • Chandra, Prakash;Kim, Jihee;Rhee, Seog Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.524-530
    • /
    • 2013
  • In this study, we describe the most expected behavior of cells on the modified surface and the correlation between the modified substrates and the response of cells. The physicochemical characteristics of substrates played an essential role in the adhesion and proliferation of cells. Glass and polymer substrates were modified using air plasma oxidation, and the surfaces were coated with self-assembled monolayer molecules of silanes. The PDMS substrates embedded with parallel micropatterns were used for evaluation of the effect of topologically modified substrate on cellular behaviour. BALB/3T3 fibroblast cells were cultured on different surfaces with distinct wettability and topology, and the growth rates and morphological change of cells were analyzed. Finally, we found the optimum conditions for the adhesion and proliferation of cells on the modified surface. This study will provide insight into the cell-surface interaction and contribute to tissue engineering applications.

New Glass Fiber Reinforced Composite Insulating Material by Reactive Plasma Surface Treatment (반응성 플라즈마 표면 처리기법을 도입한 새로운 유리섬유 강화 복합재료의 개발 및 물성연구)

  • 성열문;하흥주;문상룡;조정수;김규섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.141-143
    • /
    • 1994
  • One of the Principal problems encountered in the use of filer reinforced composites is to establish an active fiber surface to achieve maximum adhesion between resin and fiber surface. Now, we want to develope new process that will overcome the disadvantage of the chemical coupling agent and achieve maximum adhesion at the interface between resin and fiber by active plasma treatment on the glass fiber surface. In this study. we investigated the effect of plasma treatment on the wettability of glans surface .

  • PDF

Surface Modified Glass-Fiber Effect on the Mechanical Properties of Glass-Fiber Reinforced Polypropylene Composites

  • Park, Sanghoo;Kim, Su-Jong;Shin, Eun Seob;Lee, Seung Jun;Kang, Beom Mo;Park, Kyu-Hwan;Hong, Seheum;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.182-187
    • /
    • 2019
  • To improve the mechanical properties of glass-fiber-reinforced polypropylene (PP) composites through interfacial adhesion control between the PP matrix and glass fiber, the surface of the glass fiber was modified with PP-graft-maleic anhydride (MAPP). Surface modification of the glass fiber was carried out through the well-known hydrolysis-condensation reaction using 3-aminopropyltriethoxy silane, and then subsequently treated with MAPP to produce the desired MAPP-anchored glass fiber (MAPP-a-GF). The glass-fiber-reinforced PP composites were prepared by typical melt-mixing technique. The effect of chemical modification of the glass fiber surface on the mechanical properties of composites was investigated. The resulting mechanical and morphological properties showed improved interfacial adhesion between the MAPP-a-GF and PP matrix in the composites.

A Study on Bonding Process for Improvement of Adhesion Properties Between CFRP-Metal Dual Materials (CFRP/금속간 접합력 강화를 위한 접합공정 연구)

  • Kwon, Dong-Jun;Park, Sung-Min;Park, Joung-Man;Kwon, Il-Jun
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.416-421
    • /
    • 2017
  • The structural adhesive have been manufactured for improvement of bonding process between CFRP and metal. The optimal condition for bonding process were investigated by evaluating the lap shear strength with amount of adhesive and curing time and the surface treatment of the CFRP. To confirm proper adhesion conditions, the fracture sections between CFRP and metal was observed using reflection microscope. Not only the improvement of the adhesion condition was important, but surface treatment on CFRP was also important. The optimal curing temperature was at $180^{\circ}C$ for 20 minutes. The improvement for adhesive property was confirmed After surface treatment on CFRP. The optimal amount of structural adhesive for bonding between CFRP and metal was $1.5{\times}10^{-3}g/mm^2$. Through the optimization of bonding process, the improvement of mechanical property over 10% is confirmed in comparison with existing adhesive.

Changes in the amount of adhesion of Streptococcus mutans to pit and fissure sealant incorporating cerium oxide nano particles(CNPs) (세륨옥사이드나노입자(Cerium oxide nano particles: CNPs)를 함유한 치면열구전색재의 Streptococcus mutans 부착량 변화)

  • Lee, Seong-Sook;Park, Young-Min;Kim, Dong-Ae
    • Journal of Korean society of Dental Hygiene
    • /
    • v.20 no.4
    • /
    • pp.535-543
    • /
    • 2020
  • Objectives: The aim of this study was to investigated the surface roughness and change in the amount of adhesion of Streptococcus mutans to the commercial pit and fissure sealant containing cerium oxide nano particles(CNPs). Methods: The CNPs was incorporated into a commercial pit and fissure sealant at 0-4.0 wt%. Disk Specimens (ϕ 10 mm × 2 mm) were prepared by light polymerization the front and back for 40s. Average surface roughness was measured and Streptococcus mutans adhesion was observed under confocal laser scanning microscopy (CLSM) after 24 hour. Data were statistically analyzed by one-way ANOVA and Tukey HSDa post-hoc test. Results: Difference of the surface roughness(Ra) between groups was not statistically significant in both non CNPs group and CNPs group(p>0.05). In CNPs group, the amount of S. mutans adhesion was significantly different between control group and decreased in order of CNPs 4.0, CNPs 0.5, CNPs 1.0 and CNPs 2.0(p<0.05). Conclusions: Within the limitation of this study, these aspects of oral bacteria performances suggest potential usefulness of the CNPs incorporation, especially CNPs 1% and 2%, in pit and fissure sealant for inducing antibacterial effect.

Biological Affinity and Biodegradability of Poly(propylene carbonate) Prepared from Copolymerization of Carbon Dioxide with Propylene Oxide

  • Kim, Ga-Hee;Ree, Moon-Hor;Kim, Hee-Soo;Kim, Ik-Jung;Kim, Jung-Ran;Lee, Jong-Im
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.473-480
    • /
    • 2008
  • In this study we investigated bacterial and cell adhesion to poly(propylene carbonate) (PPC) films, that had been synthesized by the copolymerization of carbon dioxide (a global warming chemical) with propylene oxide. We also assessed the biocompatibility and biodegradability of the films in vivo, and their oxidative degradation in vitro. The bacteria adhered to the smooth, hydrophobic PPC surface after 4 h incubation. Pseudomonas aeruginosa and Enterococcus faecalis had the highest levels of adhesion, Escherichia coli and Staphylococcus aureus had the lowest levels, and Staphylococcus epidermidis was intermediate. In contrast, there was no adhesion of human cells (cell line HEp-2) to the PPC films, due to the hydrophobicity and dimensional instability of the surface. On the other hand, the PPC films exhibited good biocompatibility in the mouse subcutaneous environment. Moreover, contrary to expectation the PPC films degraded in the mouse subcutaneous environment. This is the first experimental confirmation that PPC can undergo surface erosion biodegradation in vivo. The observed biodegradability of PPC may have resulted from enzymatic hydrolysis and oxidative degradation processes. In contrast, the PPC films showed resistance to oxidative degradation in vitro. Overall, PPC revealed high affinity to bioorganisms and also good bio-degradability.

A Study on Water Contact Angle and Peel Strength by Anti- Adhesion Coating on Die Blade Materials for Adhesive Film Cutting (점착필름 절단용 다이 칼날 소재에 적용된 점착 방지 코팅의 물 접촉각 및 박리강도에 관한 연구)

  • Yujin Ha;Min-Wook Kim;Wook-Bae Kim
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.190-196
    • /
    • 2023
  • Anti-adhesion coatings are very important in the processing of adhesive materials such as optical clear adhesive (OCA) films. Choosing the appropriate release coating material for dies and tools can be quite challenging. Hydrophobic surface treatment is usually performed, and its performance is often estimated by the static water contact angle (CA). However, the relationship between the release performance and the CA is not well understood. In this study, the water CAs of surfaces coated with anti-adhesion materials and the peel strengths of the acrylic-based adhesive films are evaluated. STC5 and SUS304 are selected as the base materials. Base materials with different surface roughnesses are produced by hairline finishing, mirror-polishing, and end milling. Four fluoropolymer compounds, including a self-assembled monolayer, are selected to make the base surface hydrophobic. Static, advancing, and receding CAs are mostly increased due to the coating, but the CA hysteresis is found to increase or decrease depending on the coating material. The peel strengths all decreased after coating and are largely dependent on the coating material, with significantly lower values observed for fluorosilane and perfluoropolyether silane coatings. The peel strength is observed to correlate better with the static CA and advancing CA than with the receding CA or hysteresis. However, it is not possible to accurately predict the anti-adhesion performance based on water CA alone, as the peel strengths are not fully proportional to the CAs.

ORIGINAL ARTICLE - Adhesion of Streptococcus mutans and Streptococcus sobrinus to different types of self-ligating brackets

  • Yang, Pil-Seung;Yu, Yoon-Jeong;Cha, Jung-Yul;Hwang, Chung-Ju
    • The Journal of the Korean dental association
    • /
    • v.50 no.7
    • /
    • pp.394-406
    • /
    • 2012
  • Objective: The adhesion capabilities of different types of self-ligating brackets were measured with respect to Streptococcus mutans and Streptococcus sobrinus. Methods: Five types of self-ligating brackets (Clippy-C; Mini Clippy; Clarity-SL; Speed; Damon 3) were used for the experiment group and composite resin brackets (Spirit-MB), metal brackets (Victory) and polycrystalline alumina brackets (Clarity) were used for the control group. In order to assess adhesion of bacteria to the brackets, the brackets were cultured for 3, 6 and 24 hours in media containing bacteria and 20% sucrose. Results: There was no statistic difference in adhesion amount of Streptococcus mutans and Streptococcus sobrinus according to the types of brackets. A total adhesion amount according to bracket type was different. An extended incubation time increased adhesion amount. Observation under scanning electron microscope showed that Streptococcus sobrinus adhered more to Clippy-C and Victory rather than to Clarity-SL. Conclusions: Clarity-SL, a self-ligating esthetic bracket was confirmed to show lower bacterial adhesion to cariogenic bacteria, Streptococcus mutans and Streptococcus sobrinus group than other self-ligating brackets or conventional brackets, which suggests that proper use of self-ligating esthetic brackets might even be better in preventing tooth surface decalcification.