Browse > Article
http://dx.doi.org/10.13065/jksdh.20200049

Changes in the amount of adhesion of Streptococcus mutans to pit and fissure sealant incorporating cerium oxide nano particles(CNPs)  

Lee, Seong-Sook (Department of Dental Hygiene, Yeoju Institute of Technology)
Park, Young-Min (Department of Dental Hygiene, Yeoju Institute of Technology)
Kim, Dong-Ae (Department of Dental Hygiene, Yeoju Institute of Technology)
Publication Information
Journal of Korean society of Dental Hygiene / v.20, no.4, 2020 , pp. 535-543 More about this Journal
Abstract
Objectives: The aim of this study was to investigated the surface roughness and change in the amount of adhesion of Streptococcus mutans to the commercial pit and fissure sealant containing cerium oxide nano particles(CNPs). Methods: The CNPs was incorporated into a commercial pit and fissure sealant at 0-4.0 wt%. Disk Specimens (ϕ 10 mm × 2 mm) were prepared by light polymerization the front and back for 40s. Average surface roughness was measured and Streptococcus mutans adhesion was observed under confocal laser scanning microscopy (CLSM) after 24 hour. Data were statistically analyzed by one-way ANOVA and Tukey HSDa post-hoc test. Results: Difference of the surface roughness(Ra) between groups was not statistically significant in both non CNPs group and CNPs group(p>0.05). In CNPs group, the amount of S. mutans adhesion was significantly different between control group and decreased in order of CNPs 4.0, CNPs 0.5, CNPs 1.0 and CNPs 2.0(p<0.05). Conclusions: Within the limitation of this study, these aspects of oral bacteria performances suggest potential usefulness of the CNPs incorporation, especially CNPs 1% and 2%, in pit and fissure sealant for inducing antibacterial effect.
Keywords
Bacterial adhesion; Cerium oxide nano particles; Pit and fissure sealants; Streptococcus mutans;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Yoon HS, Park CM. Anti-bacterial effects of basil oil on streptococcus mutans and porphyromonas gingivalis . Journal of Korean Soc Integra Med 2018;6(3):131-9. https://doi.org/10.15268/ksim.2018.6.3.131
2 Jarvinen H, Tenovuo J, Huovinen P. In vitro susceptibility of streptococcus mutans to chlorhexidine and six other antimicrobial agents. Antimicrob Agents Chemother 1993;37(5):1158-9.   DOI
3 Ribeiro J, Ericson D. In vitro antibacterial effect of chlorhexidine added to glass-ionomer cements. Eur J Oral Sci 1991;99(6):533-40. https://doi.org/10.1111/j.1600-0722.1991.tb01066.x   DOI
4 Shimazu K, Ogata K, Karibe H. Evaluation of the ion-releasing and recharging abilities of a resin-based fissure sealant containing S-PRG filler. Dent Mater J 2011;30(6):923-7. https://doi:10.4012/dmj.2011-124   DOI
5 Pai MR, Acharya LD, Udupa N. Evaluation of antiplaque activity of Azadirachta indica leaf extract gel-a 6-week clinical study. J Ethnopharmacol 2004;90(1):99-103. https://doi.org/10.1016/j.jep.2003.09.035   DOI
6 Masadeh MM, Karasneh GA, Al-Akhras MA, Albiss BA, Aljarah KM, Al-Azzam S, et al. Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against gram positive and gram negative biofilm bacteria. Cytotechnology 2015;67(3):427-35. https://doi: 10.1007/s10616-014-9701-8   DOI
7 Wu W, Li S, Liao S, Xiang F, Wu X. Preparation of new sunscreen materials $Ce_1-xZn xO_2-x$ via solid-state reaction at room temperature and study on their properties. Rare Metals 2010;29(2):149-53. https://doi.org/10.1007/s12598-010-0026-2   DOI
8 Kim YH. Variety of properties and functions of cerium. KISTI Analysis report 2010;4:1-5.
9 Santos C, Passos Farias I, Reis Albuquerque A, Silva P, CostaOne G, Sampaio F. Antimicrobial activity of nano cerium oxide (IV) ($CeO_2$) against Streptococcus mutans. BMC Proc 2014;8(Suppl 4):P48.
10 Thakur N, Manna P, Das J. Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. J Nanobiotechnology 2019;17(1):1-27. https://doi.org/10.1186/s12951-019-0516-9   DOI
11 Xu J, Li G, Li L. $CeO_2$ nanocrystals: seed-mediated synthesis and size control. Materials Research Bulletin 2008;43(4):990-5. https://doi.org/10.1016/j.materresbull.2007.04.019   DOI
12 Hannig M, Hannig C. Nanomaterials in preventive dentistry. Nat Nanotechnol 2010;5(8):565-9. https://doi.org/10.1038/nnano.2010.83.   DOI
13 Ikeda-OA, Hennig C, Weiss S, Yaita T, Bernhard G. Hydrolysis of tetravalent cerium for a simple route to nanocrystalline cerium dioxide: an in situ spectroscopic study of nanocrystal evolution. Chem Eur J 2013;19(23):7348-60. https://doi.org/10.1002/chem.201204101   DOI
14 Jee HJ. The inhibity effect of light-cured pit & fissure sealant incorporating antibacterial filler against s. mutans[Master's thesis]. Seoul: Univ. of Yonsei, 2004.
15 Fard JK, Jafari S, Eghbal MA. A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull 2015;5(4):447-54. https://doi.org/10.15171/apb.2015.061   DOI
16 Yoon KY, Lee SJ, Lee JE, Bae GN, Ji JH, Hwang J, et al. Evaluation of antimicrobial characteristics of nanoparticles against bacteria. J Odor Indoor Environ 2005;2(1):46-53.
17 Venkatesh KS, Gopinath K, Palani NS, Arumugam A, Jose SP, Bahadur SA, et al. Plant pathogenic fungus F solani mediated biosynthesis of nanoceria: antibacterial and antibiofilm activity. RSC Adv 2016;6(48):42720-9.   DOI
18 Cuahtecontzi-Delint R, Mendez-Rojas MA, Bandala ER, Quiroz MA, Recillas S, Sanchez-Salas JL. Enhanced antibacterial activity of $CeO_2$ nanoparticles by surfactants. Int J Chem React Eng 2013;11(2):781-5.   DOI
19 Kim YJ, Kim S, Jeong TS. Plaque adhesion on the surface of various composite resin. J Koran Acad Pediatr Dent 2004;31(4):547-54.
20 Park KH, Lee MR. Comparative study on oral symptoms in middle school and high school students of multicultural and ordinary families in Korea. J Korean Soc Dent Hyg 2017;7(2):193-202. https://doi.org/10.13065/jksdh.2017.17.02.193
21 Kang JM, Im SU, Jo HY, Ma JK, Kim JS, Kim KH, et al. Adhesive characteristics of Mutans Streptococci on the surface of filling materials and sealant. Kor J Dent Mater 2015;42(3):229-37. https://doi.org/10.14815/kjdm.2015.42.3.229   DOI
22 Cuto EI, Buonocore MG. Sealing of pits and fissures with an adhesive resin:Its use in caries prevention. J Am Dent Assoc 1967;21(1):121-8. https://doi.org/10.14219/jada.archive.1967.0205
23 Jeong MA, Kim DA. Effect of low molecular chitosan on the surface properties and oral bacteria adhesion of dental cement. J KoCon a 2019;19(2):277-83. https://doi.org/10.5392/JKCA.2019.19.02.277
24 Jun SK, Kim DA. Effect of physical properties and bacterial adherence inhibition of pit and fissure sealant containing bioactive glass nano particles(BGn). Jour of KoCon a 2018;18(3):542-9. https://doi.org/10.5392/JKCA.2018.18.03.542
25 Kim JW. An experimental study on the anticariogenic effect of fluoride-releasing pit and fissure sealant. J Korean Acad Pediatr Dent 1998;25(4):849-57.
26 Jung YB, Shin SC. A comparative experimental study on hardness in several materials for sealants. J Korean Acad Oral Health 1996;20(2):247-57.
27 Jung HK. Pit and fissure sealant. The Journal Korean Dent Assoc 1998;26(5):384-8.
28 Nam SM, Ku HM, Lee ES, Kim BI. Reliability of Q-Ray view for assessing retention status of pit and fissure sealant. The Journal Korean Dent Assoc 2020;58(3):140-51.
29 Magdalane CM, Kaviyarasu K, Vijaya JJ, Siddhardha B, Jeyaraj B. Photocatalytic activity of binary metal oxide nanocomposites of $CeO_2$/CdO nanospheres: investigation of optical and antimicrobial activity. J Photochem Photobiol B Biol 2016;163:77-86. https://doi.org/10.1016/j.jphotobiol.2016.08.013   DOI
30 Arumugam A, Karthikeyan C, Haja Hameed AS, Gopinath K, Gowri S, Karthika V. Synthesis of cerium oxide nanoparticles using Gloriosa superba L leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng C 2015;49:408-15. https://doi.org/10.1016/j.msec.2015.01.042   DOI
31 Masadeh MM, Karasneh GA, Al-Akhras MA, Albiss, BA, Aljarah KM, Al-Azzam SI, et al. Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against gram positive and gram negative biofilm bacteria. Cytotechnology 2015;67(3):427-35. https://doi.org/10.1007/s10616-014-9701-8   DOI