• Title/Summary/Keyword: Surf zone

Search Result 107, Processing Time 0.023 seconds

Wave Breaking of Sinusoidal Waves in the Surf Zone (쇄파대에서 정현파의 쇄파)

  • Hwang, Jong-Kil;Kim, Young-Taek;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.6
    • /
    • pp.461-466
    • /
    • 2004
  • This study presents a combined experimental and numerical effort to investigate wave breaking of sinusoidal waves in a surf zone. Numerical predictions are verified by comparing to laboratory measurements. The model solves the Reynolds equations and$textsc{k}$-$\varepsilon$ models for the turbulence analysis. To track the free surface displacement, the volume of fluid method is employed. As the height of incident wave increases, the wave breaking occurs at a closer point of the slope in the numerical model and laboratory experiments with the same depth and period. When a wave breaking occurs, the ratio of wave height becomes larger, with the same wave height and depth, as the period increases.

Experiments on the Submarine Cable Protection Methods Considering the Connection Type (체결형상을 고려한 해저케이블 보호공법에 관한 실험)

  • Yoon, Jae Seon;Ha, Taemin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.329-329
    • /
    • 2017
  • In this study attempted to evaluate the stability of the protection methods by examining hydraulic characteristics of the area around the point in which marine cable protector is installed such as surf zone occurrence point of shore-end submarine cables suitable for coastal marine environmental conditions, flow rate t the tope of the protector and maximum wave height, and to provide basic data for the selection of the optimal protection method. In performing hydraulic model experiments, the topography of submarine cable installation location was reproduced in 2-D sectional channel, and models appropriate for experimental scale and similitude law were produced and installed for each condition of submarine cables and protectors. Since the topography and submarine cable protectors were reproduced and installed in 2-D sectional channel, the exact reproduction of surf and transformation in shallow water zone was possible, and thus the physical properties could be clearly analyzed. For stability review, an experiment to examine the stability was conducted using a wave maker with 50-year frequency design waves as target, and wave height and cycles were applied based on the approximate lowest low water level(Approx. L.L.W), which is the most dangerous in submarine cable protection methods. As for experimental time, typhoon passing time in summer (about 3 hours) was applied, and wave patterns and deviation ratio of the submarine cable protector were investigated after making irregular waves corresponding to design waves. In addition, current meter and wave height meter were installed at the installation location of the submarine cable protector, and the flow rates and wave height at the top of the protector were measured and analyzed to review hydraulic properties.

  • PDF

A Numerical Study on the Prediction of Sloshing Impact Pressure (Sloshing 충격압력의 추정을 위한 수치기법에 관한 연구)

  • Y.H. Kim;Y.J. Park;H.R. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.61-73
    • /
    • 1993
  • In the present study, sloshing problem is analyzed by the application of Finite Difference Method. SOLA-SURF scheme is applied to the analysis of fluid motion considering free surface. Especially, the concept of impact buffer zone is introduced for the prediction of more realistic impact pressure on tank. Numerical computation is carried out for the typical three models, and the computed results show good agreement with experimental data. The computation is also performed for 300,000 tons VLCC as a real-ship application. From the present study, it is proved that this numerical technique is quite practical to the prediction of sloshing impact pressure.

  • PDF

Numerical Analysis of Nonlinear Shoaling Characteristics over Surf Zone Using SPH and Lagrangian Dynamic Smagronsky Model (Lagrangian Dynamic Smagronsky 난류모형과 SPH를 이용한 쇄파역에서의 비선형 천수거동에 관한 연구)

  • Cho, Yong-Jun;Lee, Heon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.1
    • /
    • pp.81-96
    • /
    • 2007
  • Nonlinear shoaling characteristics over surf zone are numerically investigated based on spatially averaged NavierStokes equation. We also test the validity of gradient model for turbulent stresses due to wave breaking using the data acquainted during SUPERTANK LABORATORY DATA COLLECTION PROJECT(Krauss et al., 1992). It turns out that the characteristics length scale of breaking induced current is not negligible, which firmly stands against ever popular gradient model, ${\kappa}-{\varepsilon}$ model, but favors Large Eddy Simulation with finer grid. Based on these observations, we model the residual stress of spatially averaged NavierStokes equation after Lagrangian Dynamic Smagorinsky(Meneveau et al., 1996). We numerically integrate newly proposed wave equations using SPH with Gaussian kernel function. Severely deformed water surface profile, free falling water particle, queuing splash after landing of water particle on the free surface and wave finger due to structured vortex on rear side of wave crest(Narayanaswamy and Dalrymple, 2002) are successfully duplicated in the numerical simulation of wave propagation over uniform slope beach, which so far have been regarded very difficult features to mimic in the computational fluid mechanics.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part I: Flow and turbulence fields

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.23-60
    • /
    • 2016
  • The major objective of this study was to develop further understanding of 3D nearshore hydrodynamics under a variety of wave and tidal forcing conditions. The main tool used was a comprehensive 3D numerical model - combining the flow module of Delft3D with the WAVE solver of XBeach - of nearshore hydro- and morphodynamics that can simulate flow, sediment transport, and morphological evolution. Surf-swash zone hydrodynamics were modeled using the 3D Navier-Stokes equations, combined with various turbulence models (${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES). Sediment transport and resulting foreshore profile changes were approximated using different sediment transport relations that consider both bed- and suspended-load transport of non-cohesive sediments. The numerical set-up was tested against field data, with good agreement found. Different numerical experiments under a range of bed characteristics and incident wave and tidal conditions were run to test the model's capability to reproduce 3D flow, wave propagation, sediment transport and morphodynamics in the nearshore at the field scale. The results were interpreted according to existing understanding of surf and swash zone processes. Our numerical experiments confirm that the angle between the crest line of the approaching wave and the shoreline defines the direction and strength of the longshore current, while the longshore current velocity varies across the nearshore zone. The model simulates the undertow, hydraulic cell and rip-current patterns generated by radiation stresses and longshore variability in wave heights. Numerical results show that a non-uniform seabed is crucial for generation of rip currents in the nearshore (when bed slope is uniform, rips are not generated). Increasing the wave height increases the peaks of eddy viscosity and TKE (turbulent kinetic energy), while increasing the tidal amplitude reduces these peaks. Wave and tide interaction has most striking effects on the foreshore profile with the formation of the intertidal bar. High values of eddy viscosity, TKE and wave set-up are spread offshore for coarser grain sizes. Beach profile steepness modifies the nearshore circulation pattern, significantly enhancing the vertical component of the flow. The local recirculation within the longshore current in the inshore region causes a transient offshore shift and strengthening of the longshore current. Overall, the analysis shows that, with reasonable hypotheses, it is possible to simulate the nearshore hydrodynamics subjected to oceanic forcing, consistent with existing understanding of this area. Part II of this work presents 3D nearshore morphodynamics induced by the tides and waves.

Remote monitoring of the breaking ocean waves by a marine X-band radar in Yongho Man, Busan (부산 용호만에서 선박용 X-band 레이더에 의한 쇄파의 원격 모니터링)

  • Lee, Dae-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.3
    • /
    • pp.227-234
    • /
    • 2012
  • This paper describes the remote monitoring of breaking ocean waves generated by Typhoon Nabi, whose name means butterfly in Korean, using a marine X-band radar in the Yongho Man, Busan, Korea. The basic purpose of this study is to investigate the dynamic behavior and to estimate the periods of breaking waves across the surf zone from radar image sequences. In these experiments, the land-based radar system imaged the inshore zone of three miles from the coastline to a isobath of 30 meters. The wave period and the dominant wave direction for breaking ocean waves extracted directly from radar image sequences were 157.4 meters and 298 degrees, respectively. However, the result calculated quantitatively by the continuous wavelet transform (CWT) showed that the period of breaking waves was 154.3 meters. The average difference in breaking wave periods between the value extracted by using EBRL (electronic bearing and range line) of radar and the calculated value by CWT was 3.1 meters, showing that the CWT method is also accurate. These results suggest that a marine X-band radar system is a viable method of monitoring the breaking ocean waves.

Analysis of the Hydraulic Behaviour in the Nearshore Zone by a Numerical Model (수치모형에 의한 연안해역 해수운동의 분석)

  • Lee, Hee-Young;Jeoung, Sun-Kil
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.73-83
    • /
    • 1994
  • The unproper development of the nearshore zone can enhance the diffusion of pollutant in the nearshore zone resulting in unbalanced sediment budget of beach which causes alteration of beach topography. Therefore, it is required to predict the effects of the envirnmental change quantitatively. In this paper, the depth-averaged and time-averaged energy balance equation is selected to acount for the wave transformation such as refraction, shoaling effect, the surf zone energy disipation, wave breaking index and bore, due to wave breaking in the shore region.(Numerical solutions are obtained by a finite difference method, ADI and Upwind. For the calculation of the wave-induced current, the unsteady nonlinear depth-averaged and time-averaged governing equation is derived based on the continuity and momentum equation for imcompressible fluid.) Numerical solutions are obtained by finite difference method considering influences of factors such as lateral mixing coefficient, bed shear stress, wave direction angle, wave steepness, wave period and bottom slope. The model is applied to the computation of wave transformation, wave-induced current and variation of mean water leel on a uniformly sloping beach.

  • PDF

Characteristics of Wave Breaker and Longshore Current in the Surf Zone (쇄파특성과 쇄파대내의 연안류)

  • 김경호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.2
    • /
    • pp.65-71
    • /
    • 1991
  • Many investigations of wave deformation without currents have been carried out experimentally and theoretically but, studies treating the effect of longshore current on the wave deformation are few. It is thus necessary to evaluate the effect of longshore current on the wave deformation after breaking. In the paper the wave height attenuation. the wave direction and the variation of mean water level are calculated in which effects of longshore current are involved. To assess the effect of longshore current on the wave deformation, factors above with longshore current are compared with them without longshore current by using calculated results.

  • PDF

Characteristics of Equilibrium Beach Profile under Random Waves (불규칙파랑 효과를 고려한 평형단면의 특성)

  • Lee, Cheol-Eung;Choi, Han-Kyu;Han, Chun-Ho
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.83-95
    • /
    • 1996
  • The equilibrium beach profiles with the effects of random waves and nonuniform grain size in the surf zone are derived from the Thornton and Guza(1983)'s energy dissipation model. The derived beach profiles are the functions of the breaking wave strength, the frequency of the incident wave, and the wave induced-energy dissipation at breaking point. It is not confirmed that the equilibrium beach profiles are better agreement with the measured profiles than the classical profiles. However, the characteristic of the changes of the beach profiles with respect to the breaking wave stgrngth and the frequency of the incident wave can be analyzed which has not been studied by the classical model.

  • PDF

Influence of long period waves on sediment suspension in the surf zone (쇄파대에 있어서 부유사에 미치는 장주기 성분파의 영향)

  • 신승호;율산선소
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.216-221
    • /
    • 2003
  • 황천 시에 쇄파대 내에서 발달한 장주기파는 전빈의 침식에 직집적인 원인이 되는(가여 1992) 등, 쇄파대 내의 표사현상에 큰 영향을 미친다. 쇄파대 내의 부유사 농도가 장주기 변동을 하는 것은 가여ㆍ전중(1983), 시소 등(1985) 등에 의해 현지에서 관측되어 있다 또한 Beach and Sternberg(1988, 1991)는 장주기파가 발달한 때의 쇄파대 내 부유사 농도가 장주기파가 발달하지 않은 경우에 비해 3-4배의 값을 나타내는 것을 지적하면서 장주기파에 의한 내외해 방향(cross shore direction) 부유사 flux의 방향이 주파수나 저면으로부터의 높이에 의해 변화함을 제시하였다. (중략)

  • PDF