DOI QR코드

DOI QR Code

Wave Breaking of Sinusoidal Waves in the Surf Zone

쇄파대에서 정현파의 쇄파

  • Hwang, Jong-Kil (Graduate Student, Dept. of Sivil Engineerin, Hanyaang University) ;
  • Kim, Young-Taek (Graduate Student, Dept. of Sivil Engineerin, Hanyaang University) ;
  • Cho, Yong-Sik (Dept. of Sivil Engineerin, Hanyaang University)
  • 황종길 (한양대학교 대학원 토목공학과) ;
  • 김영택 (한양대학교 대학원 토목공학과) ;
  • 조용식 (한양대학교 공과대학 토목공학과)
  • Published : 2004.06.01

Abstract

This study presents a combined experimental and numerical effort to investigate wave breaking of sinusoidal waves in a surf zone. Numerical predictions are verified by comparing to laboratory measurements. The model solves the Reynolds equations and$textsc{k}$-$\varepsilon$ models for the turbulence analysis. To track the free surface displacement, the volume of fluid method is employed. As the height of incident wave increases, the wave breaking occurs at a closer point of the slope in the numerical model and laboratory experiments with the same depth and period. When a wave breaking occurs, the ratio of wave height becomes larger, with the same wave height and depth, as the period increases.

본 연구에서는 쇄파대에서 정현파의 쇄파에 대해 수리모형실험과 수치모형실험을 수행하였으며, 두 실험결과를 비교하였다. 수치해석 모형에서는 Reynolds 방정식을 지배방정식으로 사용하고 난류해석을 위해 $textsc{k}$-$\varepsilon$ 모델을 적용하였으며, 자유수면변위를 추적하기 위해 VOF기법을 사용하였다. 수리모형실험과 수치모형실험 모두 동일한 수심과 주기를 가질 경우, 입사파의 파고가 커질수록 쇄파발생 지점이 경사시작 지점으로부터 가까운 위치로 이동하는 경향을 보였다. 또한, 쇄파발생시 파고비(H/H$_{0}$)는 동일한 수심과 파고를 가질 경우, 주기가 커질수록 증가하는 경향을 보였다.

Keywords

References

  1. 조용식, 전찬후 (2003). '크노이드파의 발생과 최대 처오름높이,' 한국해안해양공학회논문집, 제15권, 제2호, pp. 80-85
  2. Chorin, A.J., (1968). 'Numerical solution of the Navier-Stokes equations.' Math. Comput. 22, pp. 745-862 https://doi.org/10.2307/2004575
  3. Chorin, A.J., (1969). 'On the convergence of discrete approximations of the Navier-Stokes equations.' Math. Comput.. 232, pp. 341-353 https://doi.org/10.2307/2004428
  4. Deigaard, R., Fredsoe, J. and Hedegaard, I.B. (1986). 'Suspended sediment in the surf zone.' Journal of Waterway, Port, Coastal, and Ocean Engineering. Vol. 112, pp. 115-129 https://doi.org/10.1061/(ASCE)0733-950X(1986)112:1(115)
  5. Johns, B. (1978). 'The modeling of tidal flow in a channel using a turbulence energy closure scheme.' J. Phys. Oceanogr. Vol. 8, pp. 1042-1049 https://doi.org/10.1175/1520-0485(1978)008<1042:TMOTFI>2.0.CO;2
  6. Johns, B. and Jefferson, R.J. (1980). 'The numerical modeling of surface wave propagation in the surf zone.' J. Phys. Oceanogr. Vol. 10, pp. 1061-1069 https://doi.org/10.1175/1520-0485(1980)010<1061:TNMOSW>2.0.CO;2
  7. Lemos, C. M. (1992). Wave Breaking. Springer
  8. Liu, P.L.-F. and Lin, P., (1997). 'A numerical model for breaking wave: the volume of fluid method.' Res. Rep. No. CACR-97-02, University of Delaware, USA
  9. Lin, P. (1998). 'Numerical modeling of breaking wave.' PhD thesis, Cornell University, Ithaca, N.Y.
  10. Lin, P. and Liu, P.L.-F., (1998). 'A numerical study of breaking waves in the surf zone.' Journal of Fluid Mechanics, 359, pp. 239-264 https://doi.org/10.1017/S002211209700846X
  11. Lin, P. and Liu, P.L.-F.(1999). 'Internal wave-maker for Navier-Stokes equations models.' Journal of Waterway, Port, Castal, and Ocean Engineering. pp. 207-215 https://doi.org/10.1061/(ASCE)0733-950X(1999)125:4(207)AdditionalInformation
  12. Petit, H.A.H., Tonjes, P., van Gent, M.R.A., and ven den Bosch, P., (1994). 'Numerical simulation and validation of plunging breakers using a 2D Navier-Stokes model.' Proceedings of 24th International Conference of Coastal Engineering., ASCE, pp. 511-524