• Title/Summary/Keyword: Support vectors machine

Search Result 106, Processing Time 0.029 seconds

Short-Term Load Forecasting Based on Sequential Relevance Vector Machine

  • Jang, Youngchan
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.3
    • /
    • pp.318-324
    • /
    • 2015
  • This paper proposes a dynamic short-term load forecasting method that utilizes a new sequential learning algorithm based on Relevance Vector Machine (RVM). The method performs general optimization of weights and hyperparameters using the current relevance vectors and newly arriving data. By doing so, the proposed algorithm is trained with the most recent data. Consequently, it extends the RVM algorithm to real-time and nonstationary learning processes. The results of application of the proposed algorithm to prediction of electrical loads indicate that its accuracy is comparable to that of existing nonparametric learning algorithms. Further, the proposed model reduces computational complexity.

Class Discriminating Feature Vector-based Support Vector Machine for Face Membership Authentication (얼굴 등록자 인증을 위한 클래스 구별 특징 벡터 기반 서포트 벡터 머신)

  • Kim, Sang-Hoon;Seol, Tae-In;Chung, Sun-Tae;Cho, Seong-Won
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.1
    • /
    • pp.112-120
    • /
    • 2009
  • Face membership authentication is to decide whether an incoming person is an enrolled member or not using face recognition, and basically belongs to two-class classification where support vector machine (SVM) has been successfully applied. The previous SVMs used for face membership authentication have been trained and tested using image feature vectors extracted from member face images of each class (enrolled class and unenrolled class). The SVM so trained using image feature vectors extracted from members in the training set may not achieve robust performance in the testing environments where configuration and size of each class can change dynamically due to member's joining or withdrawal as well as where testing face images have different illumination, pose, or facial expression from those in the training set. In this paper, we propose an effective class discriminating feature vector-based SVM for robust face membership authentication. The adopted features for training and testing the proposed SVM are chosen so as to reflect the capability of discriminating well between the enrolled class and the unenrolled class. Thus, the proposed SVM trained by the adopted class discriminating feature vectors is less affected by the change in membership and variations in illumination, pose, and facial expression of face images. Through experiments, it is shown that the face membership authentication method based on the proposed SVM performs better than the conventional SVM-based authentication methods and is relatively robust to the change in the enrolled class configuration.

Comparison of Prediction Accuracy Between Classification and Convolution Algorithm in Fault Diagnosis of Rotatory Machines at Varying Speed (회전수가 변하는 기기의 고장진단에 있어서 특성 기반 분류와 합성곱 기반 알고리즘의 예측 정확도 비교)

  • Moon, Ki-Yeong;Kim, Hyung-Jin;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.280-288
    • /
    • 2022
  • This study examined the diagnostics of abnormalities and faults of equipment, whose rotational speed changes even during regular operation. The purpose of this study was to suggest a procedure that can properly apply machine learning to the time series data, comprising non-stationary characteristics as the rotational speed changes. Anomaly and fault diagnosis was performed using machine learning: k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), and Random Forest. To compare the diagnostic accuracy, an autoencoder was used for anomaly detection and a convolution based Conv1D was additionally used for fault diagnosis. Feature vectors comprising statistical and frequency attributes were extracted, and normalization & dimensional reduction were applied to the extracted feature vectors. Changes in the diagnostic accuracy of machine learning according to feature selection, normalization, and dimensional reduction are explained. The hyperparameter optimization process and the layered structure are also described for each algorithm. Finally, results show that machine learning can accurately diagnose the failure of a variable-rotation machine under the appropriate feature treatment, although the convolution algorithms have been widely applied to the considered problem.

Sparse Kernel Regression using IRWLS Procedure

  • Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.735-744
    • /
    • 2007
  • Support vector machine(SVM) is capable of providing a more complete description of the linear and nonlinear relationships among random variables. In this paper we propose a sparse kernel regression(SKR) to overcome a weak point of SVM, which is, the steep growth of the number of support vectors with increasing the number of training data. The iterative reweighted least squares(IRWLS) procedure is used to solve the optimal problem of SKR with a Laplacian prior. Furthermore, the generalized cross validation(GCV) function is introduced to select the hyper-parameters which affect the performance of SKR. Experimental results are then presented which illustrate the performance of the proposed procedure.

  • PDF

Audio Segmentation and Classification Using Support Vector Machine and Fuzzy C-Means Clustering Techniques (서포트 벡터 머신과 퍼지 클러스터링 기법을 이용한 오디오 분할 및 분류)

  • Nguyen, Ngoc;Kang, Myeong-Su;Kim, Cheol-Hong;Kim, Jong-Myon
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.19-26
    • /
    • 2012
  • The rapid increase of information imposes new demands of content management. The purpose of automatic audio segmentation and classification is to meet the rising need for efficient content management. With this reason, this paper proposes a high-accuracy algorithm that segments audio signals and classifies them into different classes such as speech, music, silence, and environment sounds. The proposed algorithm utilizes support vector machine (SVM) to detect audio-cuts, which are boundaries between different kinds of sounds using the parameter sequence. We then extract feature vectors that are composed of statistical data and they are used as an input of fuzzy c-means (FCM) classifier to partition audio-segments into different classes. To evaluate segmentation and classification performance of the proposed SVM-FCM based algorithm, we consider precision and recall rates for segmentation and classification accuracy for classification. Furthermore, we compare the proposed algorithm with other methods including binary and FCM classifiers in terms of segmentation performance. Experimental results show that the proposed algorithm outperforms other methods in both precision and recall rates.

Traffic Classification based on Adjustable Convex-hull Support Vector Machines (조절할 수 있는 볼록한 덮개 서포트 벡터 머신에 기반을 둔 트래픽 분류 방법)

  • Yu, Zhibin;Choi, Yong-Do;Kil, Gi-Beom;Kim, Sung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.3
    • /
    • pp.67-76
    • /
    • 2012
  • Traffic classification plays an important role in traffic management. To traditional methods, P2P and encryption traffic may become a problem. Support Vector Machine (SVM) is a useful classification tool which is able to overcome the traditional bottleneck. The main disadvantage of SVM algorithms is that it's time-consuming to train large data set because of the quadratic programming (QP) problem. However, the useful support vectors are only a small part of the whole data. If we can discard the useless vectors before training, we are able to save time and keep accuracy. In this article, we discussed the feasibility to remove the useless vectors through a sequential method to accelerate training speed when dealing with large scale data.

Polychotomous Machines;

  • Koo, Ja-Yong;Park, Heon Jin;Choi, Daewoo
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.225-232
    • /
    • 2003
  • The support vector machine (SVM) is becoming increasingly popular in classification. The import vector machine (IVM) has been introduced for its advantages over SMV. This paper tries to improve the IVM. The proposed method, which is referred to as the polychotomous machine (PM), uses the Newton-Raphson method to find estimates of coefficients, and the Rao and Wald tests, respectively, for addition and deletion of import points. Because the PM basically follows the same addition step and adopts the deletion step, it uses, typically, less import vectors than the IVM without loosing accuracy. Simulated and real data sets are used to illustrate the performance of the proposed method.

Motion Estimation and Machine Learning-based Wind Turbine Monitoring System (움직임 추정 및 머신 러닝 기반 풍력 발전기 모니터링 시스템)

  • Kim, Byoung-Jin;Cheon, Seong-Pil;Kang, Suk-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1516-1522
    • /
    • 2017
  • We propose a novel monitoring system for diagnosing crack faults of the wind turbine using image information. The proposed method classifies a normal state and a abnormal state for the blade parts of the wind turbine. Specifically, the images are input to the proposed system in various states of wind turbine rotation. according to the blade condition. Then, the video of rotating blades on the wind turbine is divided into several image frames. Motion vectors are estimated using the previous and current images using the motion estimation, and the change of the motion vectors is analyzed according to the blade state. Finally, we determine the final blade state using the Support Vector Machine (SVM) classifier. In SVM, features are constructed using the area information of the blades and the motion vector values. The experimental results showed that the proposed method had high classification performance and its $F_1$ score was 0.9790.

Neural Text Categorizer for Exclusive Text Categorization

  • Jo, Tae-Ho
    • Journal of Information Processing Systems
    • /
    • v.4 no.2
    • /
    • pp.77-86
    • /
    • 2008
  • This research proposes a new neural network for text categorization which uses alternative representations of documents to numerical vectors. Since the proposed neural network is intended originally only for text categorization, it is called NTC (Neural Text Categorizer) in this research. Numerical vectors representing documents for tasks of text mining have inherently two main problems: huge dimensionality and sparse distribution. Although many various feature selection methods are developed to address the first problem, the reduced dimension remains still large. If the dimension is reduced excessively by a feature selection method, robustness of text categorization is degraded. Even if SVM (Support Vector Machine) is tolerable to huge dimensionality, it is not so to the second problem. The goal of this research is to address the two problems at same time by proposing a new representation of documents and a new neural network using the representation for its input vector.

Incremental Multi-classification by Least Squares Support Vector Machine

  • Oh, Kwang-Sik;Shim, Joo-Yong;Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.965-974
    • /
    • 2003
  • In this paper we propose an incremental classification of multi-class data set by LS-SVM. By encoding the output variable in the training data set appropriately, we obtain a new specific output vectors for the training data sets. Then, online LS-SVM is applied on each newly encoded output vectors. Proposed method will enable the computation cost to be reduced and the training to be performed incrementally. With the incremental formulation of an inverse matrix, the current information and new input data are used for building another new inverse matrix for the estimation of the optimal bias and lagrange multipliers. Computational difficulties of large scale matrix inversion can be avoided. Performance of proposed method are shown via numerical studies and compared with artificial neural network.

  • PDF