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ABSTRACT 

This paper proposes a dynamic short-term load forecasting method that utilizes a new sequential learning algorithm 
based on Relevance Vector Machine (RVM). The method performs general optimization of weights and hyperparame-
ters using the current relevance vectors and newly arriving data. By doing so, the proposed algorithm is trained with 
the most recent data. Consequently, it extends the RVM algorithm to real-time and nonstationary learning processes. 
The results of application of the proposed algorithm to prediction of electrical loads indicate that its accuracy is com-
parable to that of existing nonparametric learning algorithms. Further, the proposed model reduces computational 
complexity. 
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1.  INTRODUCTION 

Load forecasting plays an important role in electric 
power systems. Accurate forecasting of information is 
critical for both the electricity supplier and end-users. 
For the electricity supplier, owing to the competitive na-
ture of energy markets, accurate estimation of electrical 
loads is vital for many operational decisions, such as pri-
cing, generating capacity, scheduling of operations, and 
operating cost (Fan and Chen, 2006). For end-users, ac-
curate load forecasting provides the information needed 
to develop maintenance plans, allocate reserves, manage 
loads, and exchange redundant load with other facilities. 

Depending on a time period, load forecasting is di-
vided into long term, medium term, and short term. Long 
term load forecasting covers period of one to several 
years and its goal is for planning of utility investment 
such as whether to build or upgrade new electric utilities. 
Medium term load forecasting is related to time period 
from few months to a year and it is used for power sys-
tem planning, scheduling for generation companies for 
load peak time like summer and winter seasons. Short 

term load forecasting is made for a period from one hour 
to few days. And it plays an important role in real time 
generation control, energy management optimization, and 
energy transaction planning. 

A variety of forecasting tools based on various tech-
niques, such as time-series and artificial intelligence me-
thods, have been utilized over the years especially for 
short term load forecasting. Time-series models such as 
moving average, exponential smoothing methods, auto-
regressive and moving averages models with exogenous 
input model (ARMAX) (Taylor and McSharry, 2007), 
and Kalman filter-based methods (Al-Hamadi and Soli-
man, 2004) are employed for short-term load forecasting. 
However, these time-series models have linearity assum-
ptions; consequently, their prediction accuracy may not 
be satisfactory when there are nonlinear relationships 
among the electrical loads, previous loads, and weather 
conditions. As a result, to improve the prediction power, 
nonlinear models have been proposed. Neural Network 
(NN) (Benaouda et al., 2006; Rocha et al., 2005; Zhang 
et al., 2001; Pandey et al., 2010; Bashir et al., 2009; 
Amjady et al., 2009) based methods have been applied 
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and shown to effectively learn the time dependent load 
series and capture the nonlinearity characteristics. Recen-
tly, Support Vector Machine (SVM), a machine learning 
technique, has also been used for load forecasting (Dong-
xiao et al., 2009; Che, 2012; Ping-Feng and Wei-Chiang, 
2005). SVM is used extensively for classification and 
regression problems because of its high generalization 
performance. But SVM only provides a point forecast-
ing value; it does not provide the estimate in a probabil-
istic sense. In addition, k-fold cross-validation is usually 
employed to optimize its parameters (Hsu et al., 2003), 
which is computationally expensive. To overcome these 
disadvantages of SVM, Tipping (2001) developed a new 
machine learning technique, called the Relevance Vec-
tor Machine (RVM). RVM is a nonparametric model 
with most of its characteristics similar to those of SVM. 
However, RVM has a sparseness characteristic, i.e. it 
uses a subset of training points called Relevance Vectors 
(RVs) to predict the output given the new input data. 
Usually, the number of RVs is much smaller than that of 
SVs. Thus, RVM is more advantageous in terms of me-
mory efficiency. Further, the accuracy of RVM is com-
parable to that of SVM. 

A small number of studies utilize RVM for short 
term load forecasting (Zhinong et al., 2013, Qing et al., 
2008). And almost all of these studies are designed for 
handling batch data. It means that when electricity usage 
datasets increase dynamically in an hour, the original 
RVM operates in a batch manner by discarding the pre-
vious result of forecasts and relearning with all the ar-
rived data. In this case, it takes a lot of time to train and 
forecast the next hour electrical load. Therefore, the 
batch RVM needs to be modified to adapt itself to dy-
namic cases.  

Previous study (Nikolaev et al., 2005) proposed the 
Sequential RVM, which organizes adaptive model selec-
tion through simultaneous incremental optimization of 
both the weight parameters and their hyperparameters. 
But it does not preserve the sparseness property of RVM 
itself. To preserve the advantage of RVM, we propose a 
new dynamic learning algorithm based on RVM without 
losing the sparseness property. Our proposed algorithm 
updates the model sequentially when new observations 
are obtained. We call the proposed approach Sequential 
RVM (SRVM). 

Electricity usage data results for our implementa-
tion show that the proposed sequential model approxi-
mates the original model without losing the sparseness 
property of the original RVM. The results also indicate 
that the proposed model has improved prediction accu-
racy over other nonparametric regression algorithms and 
the original RVM in batch manner. Moreover, the pro-
posed model reduces computational complexity.  

The remainder of this paper is organized as follows. 
Section 2 reviews the original RVM and explains the 
proposed algorithm. Section 3 discusses a numerical ex-
ample used to evaluate the performance of the proposed 
Sequential RVM using electrical load data. Finally, we 
summarize and conclude this paper in Section 4. 

2.  METHODOLOGY 

In this section, we first review the original RVM 
proposed by Tipping (2001). We then extend it for on-
line learning, leading to our proposed sequential algorithm. 

2.1 Original RVM 

Given a set of input vectors and corresponding tar-
get values, 1{ , } ,=

N
i i ix y  it is assumed that  

 
( ) ε= +i i it y x , 2~ (0, )ε σi N   (1) 

 
Function ( )iy x  is defined as a combination of design 
matrix 

( 1)× +Φ∈ N NR  and its corresponding weight vector, 
1+∈ Nw R : 

0
( ) ( )φ

=
= = Φ∑

N

i i i
i

y x w x w    (2)  

0 1( , , , )= T
Nw w w w , 1 2[ ( ), ( ), , ( )]φ φ φΦ = T

Nx x x  
with 1( ) [1, ( , ), , ( , )].i i i Nx K x x K x xφ =  
The Gaussian kernel, or Radial Basis Function (RBF), is 
widely utilized for the kernel function: 

 
2 2( , ) exp{ || || }= − −m n m nK x x l x x   (3) 

 
where l  is the Gaussian kernel width. 

A target value it  follows a Gaussian distribution 
with mean ( )iy x  and covariance 

2.σ  Therefore, the like-
lihood of the complete data set is 

 

2 2 2 22 1( | , ) (2 ) exp{ || || }
2

σ πσ σ
−

= − −Φ
N

p t w t w   (4) 

 
Since the maximum likelihood estimation of w and 

2σ  from the likelihood of the complete dataset could 
lead to a severe over-fitting problem, RVM imposes 
constraints on parameter w by defining a prior probabil-
ity distribution over it: 

 
1

0
( | ) ( | 0, )α α−

=
=∑

N

i i
i

p w N w   (5) 

 
where 

1α +∈ NR  is a hyperparameter whose distribution is 
 

0
( ) ( | , )α α

=

=∏
N

i
i

p Gamma a b    (6) 

2 2

0
( ) ( | , )σ σ− −

=

=∏
N

i
p Gamma c d   (7) 

 
To make non-informative prior distributions, the para-
meters are set to zero: 0.a b c d= = = =  

The weight prior, ( ) ( | ) ( ) ,i i i i ip w p w p dα α α= ∫  corre-
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sponds to the density of a Student-t distribution, which 
causes the weight vector to be sparse, because weight 
components are sharply peaked at zero. The posterior 
distribution of the weight is represented by 

 
2

2
2

( | , ) ( | )( | , , )
( | , )
σ αα σ
α σ

=
p t w p wp w t

p t
 

( 1) 1
2 2

1
1(2 ) | | exp

2( ) ( )
π

μ μ

+
− −

−

⎧ ⎫⎪ ⎪= Σ −⎨ ⎬
− Σ −⎪ ⎪⎩ ⎭

N

Tw w
(8) 

 
where the posterior weight covariance and mean are 
represented by 

 
2 1( )α− −Σ = Φ Φ +T A      (9) 

2μ σ −= ΣΦTt      (10) 
 

with hyperparameter matrix 0 1( , , , ).NA diag α α α=  
RVM searches for the maximization of hyperpa-

rameters, which means that 
2 2( , | ) ( | , ) ( )p t p t w pα σ σ α∝  

2( )p σ with respect to α  and 
2.σ  With uniform hyper-

priors, it is required to maximize 
 

2 2( | , ) ( | , ) ( | )α σ σ α= ∫p t p t w p w dw   
1

2 1 2 2 1 12 1(2 ) | | exp ( )
2

π σ σ
− − − −⎧ ⎫= + Φ Φ − +Φ Φ⎨ ⎬

⎩ ⎭
TI A t I A t  (11) 

 
The likelihood is marginal, with maximization called 

type-Ⅱ maximization. Because maximization of α  and 
2σ  cannot be estimated in a closed form, iterative re-

estimation is used to compute the maximization of the 
hyperparameters. Therefore, differentiation of the mar-
ginal likelihood with respect to α  and 

2,σ  respectively, 
is utilized in the re-estimation. 
For the diagonal matrix ,α   

 

2 2
(1 )γ αα

μ μ
− Σ

= =new i i ii
i

i i
  (12) 

 
where Σii  is the diagonal element of the posterior wei-
ght covariance with current α  and 

2σ  values.  
For the noise variance 

2 ,σ  
 

2
2 || ||( ) μσ

γ
−Φ

=
− Σ

new

ii i

t
N

  (13) 

 
The learning algorithm is repeated until some convergence 
criteria are satisfied; then, the posterior weight mean and 
ovariance are updated with current α new

i  and 
2( ) .σ new

 

During the iterations, a large number of αi s tend to in-
finity, which means that the corresponding posterior 
weight components become zero; i.e. the posterior dis-
tributions of many weights, 

2( | , , ),α σp w t  are highly 
peaked at zero. The surviving components and their 
corresponding data points are called RVs. The number 

of RVs are, in practice, less than that of SVs in SVM, 
which leads to the prediction time in RVM being shorter 
than that in SVM; hence, we believe that RVM is more 
memory efficient than SVM.   

The predictive distribution for new data, *,x  can be 
computed based on the posterior distribution of the wei-
ght, with maximum values αMP  and 

2 :MPσ  
 

2 2 2
* *( | , , ) ( | , ) ( | , , )MP MP MP MP MPp t t p t w p w t dwα σ σ α σ= ∫  

2
* * *( | , )N t y σ=      (14) 

where * *( )μ φ= Ty x  and 2 2
* * *( ) ( )σ σ φ φ= + ΣT

MP x x  
 

For the computation of the inverse matrix in poste-
rior weight covariance, Cholesky decomposition is used 
for numerical stability with 

3( ).O n  In the first iteration, 
n is equivalent to the amount of data, N. During subse-
quent iterations, n corresponds to the number of RVs. 
Therefore, learning time is improved during the itera-
tions. However, sufficient time to compute matrix inver-
sion is required in the first iteration. Furthermore, if the 
dimension of the covariance weight is large, the degen-
erate problem, in which some columns of the covariance 
weight can be represented by the combinations of the 
other columns, arises, and results in the algorithm being 
inoperable. Therefore, it is recommended that RVM be 
used only with a small amount of data. 

2.2 Proposed Algorithm 

In this section, we introduce our proposed algo-
rithm, Sequential RVM. Sequential RVM trains and 
updates the model sequentially whenever new data are 
observed. The idea underlying Sequential RVM is that 
there might be a relationship between the RVs obtained 
previously and those obtained after new data arrive. 
Therefore, the proposed algorithm trains the model with 
the set of RVs and newly arrived data, which means that 
the RVs obtained in the previous stage are used in the 
next learning stage with the new data. 

On observing new data, first a new kernel function 
is defined using the current kernel function and the new 
data. Next, the observed data are added to the current set 
of RVs and arbitrary values iγ  and iα  placed in the cur-
rent sets of γ  and α  matrices. Iteration then begins 
with the newly arrived data and a set of RVs obtained 
prior to the new data being observed. A more detailed 
explanation of the algorithm is given in Table 1.  

Usually the values for αi  increase during the itera-
tions, and when αi  tends to infinity (a certain preset 
large number), the corresponding columns of the covari-
ance of the weight are deleted. As stated in Section 2.1, 
the surviving columns are called RVs. In the proposed 
algorithm, αi s are re-estimated from the αi s computed 
in the previous iteration. Therefore, in practice, the RVs 
that arrive first are deleted first. Consequently, the algo-
rithm always has RVs consisting of the most current 
data; i.e. the learning algorithm is more weighted by the 
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current data.  
Like the original RVM, the computational complexity 

of Sequential RVM is 
3( ).O n  However, n in the original 

RVM is equivalent to the amount of data, whereas n in 
the Sequential RVM is equivalent to the number of RVs. 

Therefore, the training time of Sequential RVM is 
substantially improved in an online manner compared 
with the original RVM in a batch manner. Further, be-
cause the number of RVs in sequential RVM is small 
compared with the number of RVs in the original RVM, 
the degenerate covariance problem does not arise. Thus, 
the algorithm requires a smaller amount of time to train 
the model and is also able to train large amounts of data. 

3.  NUMERICAL EXAMPLE 

In this section, we validate the efficacy of the pro-
posed algorithm by applying it to real-world data. 

3.1 Data Description and Implementation 

In this paper, ISO New England the hourly electric 
load data is used; for which one year’s worth of electric 
load data are available. Figure 1 depicts the electricity 
usage data. It is clear that the electricity usage has daily, 
weekly, and seasonal patterns. 

Previous studies have shown that the load patterns 

on weekdays and weekends, including holidays, are 
quite different (Song et al., 2005). Therefore, we train 
two models separately, one for weekday load prediction 
and the other for predictions on weekends and holidays, 
to achieve accurate load forecasting. For the input fea-
tures, the list of input variables in Table 2 is used for 
each model. 
We standardize each variable, such that each variable can 
range from zero to one: 

 

 
Figure 1. Hourly electricity usage in 2008. 

 
Table 2. List of input data 

Dry bulb/dew point temperature 
Hour of day, Day of the week 
Holiday/weekend indicator (0 or 1) 

 

Index 
Previous 24-hr average load 

 1, 2, 3, 4, 5, 6, 7, 12, 24, 168-hr lagged load 

Table 1. Outline of the proposed algorithm 

 
Initialize α  and 

2σ : α← 0.1, 
2σ ← 0.1 var( )t×   

if  the number of the arrived data = 1 
   1. Kernel matrix, ( , ),K X XΦ =  given current data { , }X y  

for  iteration = 1 to maximum iteration or convergence  

2. Covariance of weights, 2 1( (:, ) (:, ) ( ))Tused used A usedα− −Σ = Φ Φ +   
3. Mean of weights, 2 (:, )Tused tμ σ −= ΣΦ  

4. Hyper-parameter, 2
(1 )new i ii

i
i

αα
μ
− Σ

=  and Noise variance, 

2
2 || ||( )new

ii i

t
N

μσ
γ

−Φ
=

−Σ
 

5. Delete non-zero 
end for  

else (whenever the new data arrives) 
 6. Insert the new data point { , }new newx y  to the current data, [ ; ]new newX X x=  and [ , ]new newy y y=  
 7. Update the kernel matrix, [ ( , ) ( , ); ( , ) ( , )]new new new new newK X X K X x K X x K x xφ =  
 8. [ ; 1]newused used= , previous used is equivalent to the indices of previous RVs 
 9. [ ; 1]newγ γ=  
 10. [ ;new iα α= initial alpha ]  
 11. By using (:, ),new newusedΦ  updates , , ,μ αΣ  and 

2σ (i.e. implement 2-5) 
end if 

 
(0, 1)used ∈  is the indicator vector. “1” represents survival column, and “0” deleted column. 

( )A used  represents the diagonal matrix. 
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min

max min

−
=

−
x xx

x x
   (15) 

 
Both batch and online learning algorithms utilize the data 
arrived so far to forecast the next hour load iteratively, 
all the data sets are both training and test data.  

To validate the performance of our proposed algo-
rithm, we computed several criteria; specifically, Mean 
Square Error (MSE), Mean Absolute Error (MAE), and 
Root Mean Square Error (RMSE) 

 
21 ( )= −∑ i i

i
MSE y f

n
   (16) 

1 | |= −∑ i i
i

MAE y f
n

   (17) 

21 ( )= −∑ i i
i

RMSE y f
n

  (18) 

 
where iy  is the real hourly electricity load and if  is the 
predicted hourly electricity load by the forecasting tools. 

To compare the efficiency of the model with other 
existing algorithms, we measured the training time requi-
red. We used the validation data to conduct cross-valida-
tion and to determine the optimal Gaussian kernel width. 
With the optimal Gaussian kernel width obtained using 
the validation data, the models were then trained with 
the training dataset and electricity load predicted one 
hour ahead with the test dataset. 

3.2 Results 

We compared the prediction performance of our 
proposed approach with that of ε-SVR, NN, and RVM 
by batch manner. The prediction error, learning time 
which contains the prediction time for each hourly fore-
cast, and the number of RVs/SVs are shown in Table 3 
and 4. Table 3 shows the results for weekdays (regular 
days), whereas Table 4 shows the results for weekends 
including holidays. The proposed model clearly outper-
forms SVM, NN, and RVM in terms of the accuracies 
on both weekdays and weekends. Especially, the accu-
racy of Sequential RVM on weekends is clearly better 
than that on weekdays. 

Sequential RVM learns the model and predicts the 
subsequent load one hour ahead whenever new data are 
observed. The type of learning in Sequential RVM is 
quite different from that of the other methods we im-
plemented for comparison; specially, ε-SVM, NN, and 
RVM are batch learning algorithms. The main differ-
ence between the batch and online learnings depends on 
whether the algorithms utilize the prediction results in 
the previous learning stage in the next learning stage. The 
batch learning algorithms ignore the results of the previ-
ous learning results in the next learning processes. Thus, 
the data comes, the learning time increases and is accu-
mulated. However, Sequential RVM utilizes RVs com-
puted in the previous learning stage and newly arrived  

Table 3. Experimental results of batch learning algorithms 
for weekdays 

 ε-SVM NN RVM SRVM 
MSE 135,685 132,376 128,565 128,053
MAE 261.1 253.6 247.8 249.3 
RMSE 368.4 363.9 358.6 357.9 

Number of 
RVs/SVs 3,021 - 45 (12.3) 

Learning 
time(sec) 1,499.2 1,488.1 1,306.3 114.8 

 
Table 4. Experimental results of batch learning algorithms 

for weekends 

 ε-SVM NN RVM SRVM 
MSE 80,806 75,521 85,825 69,951 
MAE 209.7 202.6 220.1 192.1 
RMSE 284.3 274.8 293.0 264.5 

Number of 
RVs/SVs 1,528 - 39 (11.1) 

Learning 
time(sec) 135.6 225.6 284.7 25.6 

Numbers in parenthesis refer to the average number of RVs. 
 

data instead of the whole data set. It saves the learning 
time to train and forecast the load. 

As stated in Section 2.2, the proposed algorithm 
adds the new observation to the set of previous RVs. 
The relationship between the previously obtained RVs 
and the new RVs can be determined after new data are 
observed from Figure 2 and Figure 3 and Table 5 and 
Table 6. The original RVM does not have any relation-
ship among the indices of RVs when the amount of data 
increases, whereas Sequential RVM preserves or deletes 
the previous RVs during the learning process. Moreover, 
it can be seen that the more recent data are included in 
the set of RVs in Sequential RVM. Thus, it is clear that 
our proposed algorithm utilizes the more recent data in 
its learning processes. 
 

 
Figure 2. Number of RVs at each learning process for 

weekdays. 
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Figure 3. Number of RVs at each learning process for 

weekends. 
 

Table 5. Indices of RVs with different number of input data 
with original RVM 

N Number  
of RVs Indices of RVs 

500 9 100, 107, 210, 228, 262, 359, 380, 412, 
497 

600 10 77, 100, 228, 248, 262, 291, 380, 497, 
506, 507 

700 12 100, 176, 220, 248, 262, 267, 290, 291, 
380, 497, 507, 563 

800 14 44, 107, 219, 220, 221, 380, 399, 490, 
491, 497, 507, 554, 673, 720 

900 13 98, 129, 262, 267, 397, 490, 491, 497, 
597, 640, 673, 871, 872 

1,000 12 104, 129, 262, 397, 490, 491, 497, 597, 
640, 673, 872, 931 

 
Table 6. Indices of RVs with different number of input data 

with Sequential RVM 

N Number  
of RVs Indices of RVs 

500 11 88, 184, 227, 290, 356, 380, 434, 455, 
458, 492, 499 

600 10 88, 184, 227, 290, 356, 434, 455, 458, 
550, 595 

700 13 88, 184, 227, 290, 356, 434, 455, 458, 
595, 673, 689, 696, 699 

800 11 184, 227, 290, 356, 673, 716, 720, 725, 
739, 750, 797 

900 12 184, 227, 290, 356, 673, 716, 720, 739, 
750, 797, 825, 900 

1,000 12 184, 227, 290, 356, 673, 716, 720, 739, 
797, 825, 901, 910 

 
Another advantage of an RVM-based algorithm over 

SVM is that it provides probabilistic inference, includ-
ing the prediction intervals for one-hour ahead predic-
tions. By using the probabilistic information, electricity 
reserves can be prepared upfront for emergency situa-
tions such as peak electricity usage. 

 
Figure 4. 95% confidence interval of the load forecast. 

4.  CONCLUSION 

This paper proposed an RVM-based online learn-
ing algorithm in which the posterior weight, mean, and 
covariance hyperparameters, and the noise variance are 
updated from the previous learning process by utilizing 
the most recent RVs. Because the proposed method uses 
recent data to update the prediction model, it can esti-
mate loads more flexibly in nonstationary data scenarios. 
The results of a comparative evaluation using real-world 
electricity usage data indicate that the proposed method 
is superior to ε-SVM, original RVM, and NN in batch 
learning in terms of the accuracy. 

The approach used extends the batch learning algo-
rithm to online learning based on RVM using the most 
recent data to update the prediction model. The pro-
posed algorithm is weighted by more recent data in the 
learning process. Moreover, it preserves the advantages 
of the original RVM over SVM and overcomes the dis-
advantages of the original RVM. However, the accuracy 
of the proposed algorithm depends on the proper choice 
of the Gaussian kernel width. Cross-validation or maxi-
mum likelihood estimation could be used as an option to 
obtain better performance in the proposed algorithm. 
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