
韓國컴퓨터情報學會 論文誌

第17卷 第3號, 2012. 3.
2012-17-3-3-1

Traffic Classification based on Adjustable Convex-hull

Support Vector Machines

Zhibin Yu *, Yong-do Choi**, Gibeom Kil*, Sung-Ho Kim**

조절할 수 있는 볼록한 덮개 서포트 벡터 머신에 기반을 둔

트래픽 분류 방법

1)위 즈 빈*, 최 용 도**, 길 기 범*, 김 승 호**

Abstract

Traffic classification plays an important role in traffic management. To traditional methods,

P2P and encryption traffic may become a problem. Support Vector Machine (SVM) is a useful

classification tool which is able to overcome the traditional bottleneck. The main disadvantage of

SVM algorithms is that it’s time-consuming to train large data set because of the quadratic

programming (QP) problem. However, the useful support vectors are only a small part of the whole

data. If we can discard the useless vectors before training, we are able to save time and keep

accuracy. In this article, we discussed the feasibility to remove the useless vectors through a

sequential method to accelerate training speed when dealing with large scale data.

▸Keyword : Visualization, Traffic Classification, Pattern recognition

요 약

트래픽 분류는 트래픽 관리하는데 중요한 역할을 차지하고 있다. 전통적인 방법은 P2P와 암호화 트래픽을 제대

로 분류할 수 없는 문제가 있다. 서포트 벡터 머신은 기존의 문제를 해결할 수 있고 병목 현상을 극복할 수 있는 유

용한 분류 도구이다. 하지만 서포트 벡터 머신의 주요 장점은 이차 프로그래밍(QP)문제 때문에 큰 데이터 집단을

훈련하는데 시간을 소모한다. 그러나 유용한 서포트 벡터는 전체 데이터에서 극히 일부분이다. 만약 우리가 훈련전

에 쓸모없는 벡터들을 삭제할 수 있다면, 시간을 절약하고 정확도를 유지할 수 있다. 이 논문에서 우리는 대규모 데

∙제1저자 : 위즈빈 ∙교신저자 : 김승호

∙투고일 : 2011. 11. 22, 심사일 : 2011. 12. 09, 게재확정일 : 2011. 12. 28.

* 경북대학교 전자전기컴퓨터학부(School of Electronic and Computer Science, Kyungpook National University)

*** 경북대학교 컴퓨터학부(School of Computer Science and Engineering, Kyungpook National University)

※ This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea

government(MEST)(No. 2011-0004184).

68 韓國컴퓨터情報學會 論文誌(2012. 3.)

이터를 다룰 때 훈련 속도를 빠르게 하기위해 순차적인 방법을 통해 쓸모없는 벡터들을 제거하기 위한 가능성을 논

의하였다.

▸Keyword :시각화, 트래픽 분류, 패턴 인식

I. Introduction

Nowadays, the services provider offers more and

more Internet services. Those services bring us much

convenience. Meanwhile, various Internet services

are coming with a challenge to network

management. To offer greater convenience to

network management, it is important to investigate

and classify the types of network applications that

generate user traffic. It’s widely accepted that the

well-known ports-based method is inefficient to deal

with ever new applications [1][2][3]. In order to

support various business goals, operators need to

know what is flowing over their networks promptly

so they can react quickly.

Commonly deployed IP traffic classification

techniques have been based around direct inspection

of each packet’s contents at some point on the

network. However, Unpredictable (or at least

obscure) port numbers are increasingly used many

applications [4]. Consequently, more classification

techniques correlated with application type by

looking for application-specific data (or we called

protocol behavior) was developed [5]. However, the

effectiveness of such ‘deep packet inspection’

techniques is decreasing. The reasons are simple:

Such techniques need to know the syntax of each

application’s payloads while it’s able to inspect the

payload of each IP packets.

The challenges come when customers use

encryption to protect packet contents (including TCP

or UDP port numbers). The governments may also

use privacy rules to constrain the ability of third

parties to lawfully inspect payloads at all. In fact,

many network security services such as

signature-based intrusion detection system (for

instance, Snort [6] and NFR [7]) and firewall are

widely used in recent years with the growing of the

internet traffics.

A number of researchers are looking particularly

closely at the application of Machine Learning (ML)

techniques (a subset of the wider Artificial

Intelligence discipline) to IP traffic classification

[8]. Machine learning algorithms are generally

categorized into supervised learning and

unsupervised learning or clustering.

Support vector machine (SVM) is a set of related

supervised learning methods that analyze data and

recognize patterns, which is developed based on the

statistical learning theory and the principle of the

structure risk minimization. SVM has a unique

advantage in machine learning field, and soon

becomes a fast evolving research topic after it was

proposed.

SVM shows a possible way to classify network

traffic [9][10]. A main disadvantage of SVM is the

training time. The essence of the Support Vector

Machine is to solve a quadratic programming (QP)

convex problem. The time complexity is O (N3),

where N is the number of samples. Based on the

work on Joachims [11], the time complexity is close

to O (N2). However, the number of input samples N

is always large due to the growing traffic flows. As a

matter of fact, it causes a heavy load on training

step. It’s possible to decrease the training time by

decreasing N. But we will lose some accuracy at the

same time. It seems that speed and accuracy are

always incompatible.

In this paper, we proposed a sequential method

named Adjustable Convex-hull SVM (ACSVM) to

speed up SVM and keep the accuracy. The rest of

this paper is organized as follows: Section II

outlines the theoretical works about our algorithm,

including the basic theory of Support Vector

machine, and discusses the limitations of SVM.

조절할 수 있는 볼록한 덮개 서포트 벡터 머신에 기반을 둔 트래픽 분류 방법 69

Section III provides our proposed method ACSVM to

accelerate the training speed for SVM based on how

to select useful support vectors. Section IV shows

the experiment result which compares the training

time and accuracy between original SVM and

ACSVM. Section V concludes the paper with some

final remarks and suggestions of possible future

work.

II. RELATED WORKS

1. Support Vector Machine(SVM)

Support Vector Machine (SVM) which is a kind of

supervised machine learning technology is effective

on some alternative situations. An SVM model can

be described as points in space, mapped so that the

points from two groups are divided by a clear gap

that is as wide as possible.

Actually, SVM can be concluded to such an

optimization problem:

(1)

where λi and αi is the Lagrange multiplier; ξi is

the soft margin; xi is the ith input vector; zi=±1 is

the output class of xi; 〈φ(xi),φ(xi)〉 is the kernel

function and w is the norm vector to the hyperplane.

This is known as the dual problem. For large data

sets, the dual optimization can be solved using

numerical techniques (ex. Quadratic programming

[12]).

2. Support Vectors

In Formula 1, using the fact of dual form w can

be computed as:






 (2)

If λi≠0, then xi is so called support vectors.

The support vectors are the training patterns for

which Formula 1 represents an equality — that is,

the support vectors are (equally) close to the

hyperplane vector (Figure 1). The support vectors

are the training samples that define the optimal

separating hyperplane and are the most difficult

patterns to classify. Informally speaking, they are

the most informative samples for the classification

task. If we only choose the support vectors to train

the hyperplane, of course we could reduce time on

training. But the problem is we need the other

vectors to determine which one is the support

vector. So how to shrink the area when we start

training is an interesting topic.

Fig. 1. Training a Support Vector Machine consists of
finding the optimal hyperplane. The three support vectors

are shown in solid dots.

Some researches such like ‘Sequential Minimal

Optimization’ (SMO) [13], which can greatly reduce

the chunk size to 2 vectors, is very useful in linear

separable case. In non-separable case, the number of

support vectors is much higher than 2. Though we

know that most of the support vectors are near by

the hyperplane, the problem is, we do not know

exactly the position of the hyperplane before

training. Some of the algorithms such like SeqSVM

[14] showed a kind of solution to decrease the

training data as much as we can use the concept of

convex hull. But in complex non-separable case, this

method is not able to reach the accuracy as high as

the original SVM.

For large-scale problems, the dual problem

mentioned in section 2.2.1 will be difficult to

calculate. If we use Quadratic programming, we

70 韓國컴퓨터情報學會 論文誌(2012. 3.)

have to load a large matrix, so traditional

optimization algorithm like Newton method cannot

be directly used. Currently one major method for

dealing with this problem is to decompose the

quadratic programming problem to a sequence of

smaller-sized quadratic programming problems

which can be solved sequentially[15], [16].

However, for huge problems, especially those with a

large number of support vectors, this method needs

a large number of iterations and suffers from slow

convergence [17]. To find the support vectors in

complex situation, random sampling [18] technique

is developed based on the idea that the sample near

the boundary has higher probability to build the

hyperplane. Active Learning with SVM [19]

considers that unlabelled samples are helpful to

select the most informative samples for training.

In this paper, we proposed a method named

Adjustable Convex-hull SVM (ACSSVM) to speed up

SVM and keep the accuracy. And then we use the

modified SVM model to classify network traffic.

III. PROPOSED METHODS

1. Adjustable Convex hull

The concept of convex hull mentioned in

SeqSVM[14] is the merge of the cross area which

only keep the farthest wrong classified sample.

Convex hull

SVM Hyperplane

Fig. 2. Convex hull in SVM

Figure 2 shows an illustration of convex hull of a

dataset. The yellow samples are so-called convex

hull because such samples are in the periphery area.

Sometimes the information from the convex hull is

not enough for us. We may need to adjust the

thickness of the convex hull to get more information

(The area between two dashed lines.). We called

this adjustable convex hull.

Fig. 3. An illustration of convex hull

Figure 3 shows the concept of convex hull in

the Support Vector Machines. In the wrongly

classified area, convex hull mentioned in [14]

is displayed by colored circles and squares. In

another words, samples which satisfy the

following formula:

max ·   and ·       (3)

If zi (w∙φ(xi)) <1 means such output samples’

labels are wrong, and max|w∙φ(xi)| means they

have the maximum distance between such sample

and hyperplane. These circles and squares have a

high possibility to be the support vectors of the

whole data. If we only use the colored vectors from

convex hull to draw the hyperplane,

there is no doubt that we will increase the

training speed and receive a roughly classified

hyperplane. But we will lose some useful support

vectors at the same time. So our ideal Adjustable

Convex-hull model should contain the full

information of the wrongly classified area which is

displayed by two rectangles in Figure 3. That is

equal to increase the thickness of the convex hull.

Finally, we can modify formula 3 to adjust the

thickness of convex hull as:

·    (4)

where ξi is the soft margin, and t is the thickness

조절할 수 있는 볼록한 덮개 서포트 벡터 머신에 기반을 둔 트래픽 분류 방법 71

of the convex hull.

Theoretically, the range of t is:

()()() ()()()[]iiii xwzxwzt jj ××Î max,min

If we set t=min(zi(w∙φ(xi))), that means we

have the thinnest convex hull which is described in

Figure 3. Relatively, we will have thickest convex

hull if we choose t=max(zi(w∙φ(xi))). In this case,

we choose all of the samples——That is equal to

original SVM. Thin convex hull will reduce the

calculation time but lose accuracy. Thick convex hull

will increase the accuracy and training time at the

same time. So the best choice of parameter t may be

around 0. In that case, all of the wrongly classified

samples will be chosen.

2. Optimal searching process

Suppose a large training set called D = {x1, x2,

..., xn}, where each sample xi is a d-dimensional

vector and its label yi∈{+1,−1}, and the

distribution of the data sample is unknown. In the

ACSSVM, our target is to train the samples which

have more probability to be support vectors and pay

less attention to the samples which have less

probability in the large training set. Initially,

ACSVM randomly select a small bit of data from the

large training set D. Then, we are able to build the

hyperplane H1 based on A and use A to predict D.

Of course the result is not as well as the standard

SVM. Next, samples which are in the adjustable

convex hull are extracted and added to A. In the

second method, more samples will be found and add

into A. If we do this step more than 3 times, the

accuracy will be much closer to the standard SVM.

Fig. 4. Initializing A form D

In Figure 4, set D consists of squares and circles.

The static color circles and squares which is called A

from the former paragraph are selected at the first

time randomly,. Based on these randomly selected

data A, we are able to make a rough SVM plane H1

at the first step. Then we will check all the dots in

D. If one dot is in the adjustable convex hull and it

is not in A, add them into A. In Figure 5, we can

find the updated A. Then we will enter to the next

step: Train A again and draw the hyperplane H2

based on SVM, in this step, compared to H1, ¬H2

will change its orientation and rotate to the other

side. In the first two steps, we may find the

accuracy is not high if we checked that. Actually,

our target in the first two steps is to select most of

the support vectors from the adjustable convex hull.

In most of cases, the hyperplane in step 3 (Figure

6) is closer to the one of standard SVM. If needed,

we can continue the circulation until the accuracy is

no longer changed. But too many steps will waste us

a lot of time. We will find the detail experiment

results in section 4.2.

Fig. 5. Use A and information of adjustable convex hull
from step 1 to draw the hyperplane H2

Fig. 6. In most of situations, step 3 will find the solution
which is close to the ideal solution

72 韓國컴퓨터情報學會 論文誌(2012. 3.)

3. Proposed Algorithm

Supposed there is a large sample D which is

consist of two classes called circles as C and squares

as S (D=C+S). In Table 1, maxC and maxS are

max(zi(w∙φ(xi))) which is mentioned in Formula

4. PC and PS are the thickness variable which is

able to control the depth of the convex hull. If PC or

PS > 0, that means we need less depth. This will

save time but may reduce the accuracy.

Comparatively, if PC or PS < 0, it will increase the

depth of the hull. In this situation, we could receive

better accuracy but lose more time. In our

experiments, PC = PS = 0.

The flow chart is shown in figure 7. First we need

to select a small amount data defined as A from the

input data D (ex. 1%) and then use SVM to

construct a rough model with mapping function F(x).

By using F(x), we are able to make our first decision

and find out the wrong classified data A1. Check

each element in A1, if an element from A1 does not

belong to A, add it to A and start the next training.

The circulation will be ended if there is no new

elements can be found in Ai (i is the number of

training times) or the new vectors from Ai are lower

than a certain percentage of A (ex. lower than 5%).

Fig. 7. Flow chart

IV. EXPERIMENT RESULT

Some large-scale datasets which was based on

some traffic flows are used in our experiments.

These traffic flows are captured by Wireshark from

our machines. Based on some former research [15],

in order to receive the best accuracy, we choose

source/destination address, source/destination port,

protocol flags and packet size. Hence the data

source is a kind of 6-dimensional non-

separable sample. The number of the training

samples is from 50 to 508809. We can find that in

small scale data case(less than 20000), training

time is less than predicting time. That means, if we

did too many iterations especially in the later

period, we might cost more time than the standard

SVM. And what we tried to do is to save training

time. So if the scale is too small, it’s not available to

use this algorithm.

We tested ACSSVM by using SVM with L2-norm

based soft margin and RBF kernel. LIBSVM

2.8(.NET) was used for SVM algorithm. All

experiments are done by a Pentium 4 3 GHz X 2

machine with 2GB memory. The information of the

whole data traffic is shown in Figure 8. All of the

experiment data is drawn from it.

조절할 수 있는 볼록한 덮개 서포트 벡터 머신에 기반을 둔 트래픽 분류 방법 73

Table 1. Algorithm (Pseudo codes)

1 Select a small amount of circles and squares randomly as the

initial sample A fromD;

2 Use SVM(rough SVM) to train full data sample D based on

sample A and get the decision function F(x); //

Supposed if F(x)<0 means circle, while F(x)>0 means

squares

3 For each(dot Di in D)

4 {

5 If(Di is in circle C)

6 {

7 if((F(Di)>PC*maxC)&&(Di is not in A))

8 add Di into A;

9 }

10 Else

11 {

12 if(((F(Di)<PS*maxS)&&(Di is not in A))

13 add Di into A;

14 }

15 }

16 If there are no new dots found in step 3~15, terminate.

//(−max
min

≦Pc<1, −max
min

≦Ps < 1)

1. Increasing time following the number of steps

Table 2 shows the detail results in one typical

experiment. The percentage of data in this

experiment is shown in Figure 8. Although both

samples are belong to P2P traffic. In the first two

steps, the accuracy is not high. Actually, the result

based on the first step is from the initially random

data A. So the accuracy may be lower than the

result from the original SVM. In the second step,

because the new elements from the error classified

dots in the first step may be more than the initially

data A, the hyperplane(H2 in figure 5) will move to

the other side of the ideal hyperplane(H3 in figure

6). This may cause that

the accuracy in step 2 will be lower than the first

step. In step 3, based on the updated data sample

A, ACSVM will find the solution which will be much

closer to the ideal hyperplane than the result of

SeqSVM.

Table 2. Detail experiment results of ACSVM

Steps
Training
time (s)

Predict
time(s)

Total
time(s)

Accuracy
(%)

1(193+353) 0.14 7.42 7.56 96.25

2(2245+353) 0.98 24.47 33.01 87.42

3(2283+7196) 21.59 68.13 122.73 98.86

4(2283+7196) 20.66 69.06 212.45 98.86

Original SVM
(19380+35389)

213.09 64.66 277.75 98.92

Fig. 8. Packets percentage of the traffic trace

In this table, we can find that in step 4, though

the number of vectors increased, the accuracy is not

changed. That means after 3 steps, most of the

support vectors have been found. But in the later

period of SCVSVM, time we need to pay will be more

than the one in the last time. So it's important to

control the steps of the circulation. Although the

total times of 4 steps are shorter than the original

SVM, in step 4 we lose more than gain. As we

considered in section III, if the new vectors from Ai

only take a small percentage of A, it would not bring

much help to the final decision but waste more time.

2. Advantage of ACSVM

The main cost of SVM algorithm includes two

parts: predict time and training time. The

relationship between predict and training time is

shown in Figure 9. We can find that the prediction

time linearly increases with the number of samples

while the curve of training time approximately

follows an exponential growth. When the number of

samples is larger than 50000, the training time is

several times larger than predict time. In this

situation,

74 韓國컴퓨터情報學會 論文誌(2012. 3.)

Fig. 9. Relationship between time and training time

training time will dominate the cost of SVM. The

motivation of ACSVM is to discard the useless

vectors and pick up valuable vectors by sequential

training. Although the predict time in each

circulation of ACSVM is the same as SVM, it can

greatly reduce the training time in each step by only

selecting valuable vectors. Because the valuable

vectors always take a small part of the whole data,

so the training time in each step is much smaller

than training with all the samples if the amount of

samples is huge enough.

In Table 3, we trained 5 times and use the

average value. There is no doubt that both ACSVM

and SeqSVM saved time compared to the original

SVM. But in complex case, SeqSVM is not able to

find most of the possible support vectors. Maybe the

precision will be even lower than the random data in

first step. From Table 3, it’s obvious that both

SeqSVM and ACSVM algorithms are faster than the

standard SVM in large scales. In Table 3, ACSVM

used only 3 steps. We can find that the accuracy of

ACSVM is still better than SeqSVM. In complex

case, the accuracy is even better than the original

SVM.

Table 3. Comparison between ACSVM, SEQSVM and Standard
SVM

Methods
Cost

time (s)

Accuracy

(%)

Average

training

times(s)

Total

number

Bit_torrent

vs.

Xdisk

Standard

SVM
93.73 98.19 - 32056

SeqSVM 82.46 97.26 6.2 3567

ACSVM 90.21 97.65 3 11495

MSN,Web

download

vs.

Bit_torrent,

Emule

Standard

SVM
481.1 98.97 - 42245

SeqSVM 56.75 95.66 5.4 8551

ACSVM 249.54 98.56 3 7428

Mixed

Non-p2p

vs.

Mixed P2P

Standard

SVM
7768.49 94.69 - 508809

SeqSVM 3599.69 92.97 3.6 68845

ACSVM 4192.73 94.87 3 191855

Comparatively, as a price of high speed, SeqSVM

lost some accuracy. The parameters of SeqSVM are

set as: PC=PS=1. As we considered in section III, if

we set PC and PS larger than 0, we could greatly

save time. However, we may lose valuable vectors at

the same time, which may decrease the final

accuracy. From top of Table 3 to bottom, the

complexity of data source is increased. The number

of increased, too. The accuracy of SeqSVM decreased

obviously. In other word, we may consider that

SeqSVM is not reliable. And SeqSVM needs more

training times, but only 3 or 4 times will keep

enough accuracy for ACSVM. In largescale case, the

predicting time can’t be ignored. Too many

circulations will increase the total time because of

predicting.

V. CONCLUSION

In this paper, we proposed a new method called

ACSVM to reduce the training data for SVM to deal

with the large-scaled problem.

The contribution of ACSVM can b concluded as:

1. ACSVM can find the useful elements (support

조절할 수 있는 볼록한 덮개 서포트 벡터 머신에 기반을 둔 트래픽 분류 방법 75

vectors) before a full training.

2. It accelerates the speed of SVM and keeps

accuracy simultaneously.

Experiment results showed that this training

algorithm is efficient to deal with large-scale

classification problems with a high accuracy

compared to SeqSVM. If the overlapping data only

take up a small amount, the effect of this method is

extraordinary.

There are still some considerations. If the

decision function is too complex and overlapping

area in first circulation is large, we need to spend

more time in the step 3~15 in Table 1. That means,

if at the first time the result from random selection

is higher, the result from ACSVM is higher and

faster. Our future work will concentrate on using

parallel system to offer the best result at the first

time.

REFERENCE

[1] Karagiannis, Thomas; Broido, Andre; Faloutsos,

Michalis and Claffy, Kc claffy, Transport Layer

Identification of P2P Traffic, Internet

Measurement Conference (IMC ‘2004), October

2004.

[2] Madhukar, Alok. and Williamson, Carey., A

Longitudinal Study of P2P Traffic Classification,

14th IEEE International Symposium on

Modeling, Analysis, and Simulation of Computer

and Telecommunication Systems, September,

2006.

[3] Moore, Andrew W. and Papagiannaki, Konstantina,

Toward the Accurate Identification of Network

Applications, Passive and Active Measurement

Workshop (PAM 2005), March 2005.

[4] Thomas Karagiannis, Andre Broido, Nevil Brownlee,

and Kc Claffy, Is P2P dying or just hiding? in

Proceedings of the 47th annual IEEE Global

Telecommunications Conference (Globecom 2004),

Dallas, Texas, USA, November/December 2004.

[5] Subhabrate Sen, Oliver Spatscheck, and Dongmei

Wang, Accurate, scalable in network

identification of P2P traffic using application

signatures, in WWW2004, New York, NY, USA,

May 2004.

[6] Jeffrey Erman, Anirban Mahanti, and Martin

Arlitt, Byte me: a case for byte accuracy in

traffic classification, in MineNet ’07:

Proceedings of the 3rd annual ACM workshop on

Mining network data. New York, USA: ACM

Press, June 2007, pp.35–38.

[7] Matthew Roughan, Subhabrata Sen, Oliver

Spatscheck, and Nick Duffield, Class-of-service

mapping for QoS: A statistical signature-based

approach to IP traffic classification, in

Proceedings of ACM/SIGCOMM Internet

Measurement Conference (IMC) 2004,

Taormina, Sicily, Italy, October 2004.

[8] Thuy T. T. Nguyen, Grenville Armitage, "A

survey of techniques for internet traffic

classification using machine learning," in IEEE

Communications Surveys & Tutorials, vol. 10,

no. 4, Mar 2008, pp. 56-76.

[9] Este, A.; Gringoli, F.; Salgarelli, L., On-line

SVM traffic classification, Wireless

Communications and Mobile Computing

Conference (IWCMC), 2011 7th International.

[10] Ai-min Yang; Sheng-yi Jiang; He Deng, A P2P

Network Traffic Classification Method Using

SVM, Young Computer Scientists, 2008. ICYCS

2008. The 9th International Conference.

[11] Thorsten Joachims, Making Large-scale Support

Vector Machine Learning Pratical, in Advances

in Kernel Methods-Support Vector Learning.

MIT Press (2000) 169-184.

[12] Nocedal, Jorge; Wright, Stephen J. (2006).

Numerical Optimization (2nd ed.). Berlin, New

York: Springer-Verlag. p.449. ISBN

978-0-387-30303-1.

76 韓國컴퓨터情報學會 論文誌(2012. 3.)

Zhibin Yu

2005 : Harbin Institute of Technology

Thermal Engineering bachelor

of enginnering .

2011 : 경북대학교 전자전기컴퓨터학부

공학석사.

현 재 : 경북대학교 전자전기컴퓨터학부

박사과정

관심분야 : 멀티미디어, 트래픽 분류,

패턴 인식, SVM

Email : zbyu@mmlab.knu.ac.kr

최 용 도

2007 : 경북대학교 천문대기과학화 이

학사.

2009 : 경북대학교 전자전기컴퓨터학부

공학석사.

현 재 : 경북대학교 모바일통신공학과

박사과정

관심분야 : H.264/AVC 압축기술, 다

시점 동영상, 동기식 이더넷,

대역폭 예약

Email : ydchoi@mmlab.knu.ac.kr

길 기 범

2010 : 대구대학교정보공학과공학사.

현 재 : 경북대학교 전자전기컴퓨터학부

석사과정

관심분야 : 멀티미디어, 트래픽 분류,

실시간 객체 추적

Email : gbkil@mmlab.knu.ac.kr

김 승 호

1981 : 경북대학교전저공학과공학사.

1983 : 한국과학기술원 전산학과 공학

석사.

2004 : 한국과학기술원 전산학과 공학

박사

현 재 : 경북대학교 컴퓨터학부 정교수

관심분야 : 알고리즘, 멀티미디어, 다

시점 동영상, 감시 시스템,

동기식 이더넷

Email : shkim@knu.ac.kr

[13] John C. Platt, Fast training of support vector

machines using sequential minimal

optimization, in Adv. in Kernel Methods:

Schölkopf, C. Burges, A. Smola (eds.), 1998.

[14] Xuchun Li, Yan Zhu and Eric Sung Sequential

Bootstrappe Support Vector Machines A SVM

Accelerator in Proceedings of International

Joint Conference on Neural Networks,

Montreal, Canada, July 31–August 4, 2005.

[15] Zhu Li, Cho, Kenjiro; Fukuda, Kenshue; Esaki,

Hiroshi and Kato, Akira, The Impact and

Implications of the Growth in Residential

User-to-User Traffic, ACM SIGCOMM 2006,

Pisa, Italy, September 2006.

[16] Kwang In Kim, Keechul Jung and Jin Hyung

Kim, Texture-based approach for text detection

in images using support vector machines and

continuously adaptive mean shift algorithm,

IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 25, no. 12, pp.

1631-1639, Dec 2003.

[17] Kuan-Ming Lin and Chih-Jen Lin, A study on

reduced support vector machines, IEEE

Transaction on Neural Networks, vol.14,

pp.1449-1469, 2003.

[18] Jose Balcazar, Yang Dai and Osamu Watanabe,

A random sampling technique for training

support vector machines, in Proceedings of the

12th International Conference on Algorithmic

Learning Theory, 2001, pp.119-134.

[19] Hyunjung Shin and Sungzoon Cho, Fast pattern

selection for support vector classifiers, in

Advances in Knowledge Discovery and Data

Mining, 7th Pacific-Asia Conference, 2003,

pp.376-387.

저 자 소 개

