• Title/Summary/Keyword: Support motions

Search Result 143, Processing Time 0.022 seconds

Non-linear Static Analysis and Determination of Initial Equilibrium States of Space Cable Nets (3차원 케이블망의 정적 비선형 해석 및 초기 평형상태의 결정)

  • 김문영;김남일
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.134-141
    • /
    • 1997
  • A geometrically non-linear finite element formulation of spatial cable networks is presented using three cable elements. Firstly, derivation procedures of tangent stiffness and mass matrices for the space truss element and the elastic catenary cable element, and the isoparametric cable element are summarized. The load incremental method based on Newton-Raphson iteration method and the dynamic relaxation method are presented in order to determine the initial static state of cable nets subjected to self-weights and support motions. Furthermore, static non-linear analysis of cable structures under additional live loads are performed based on the initial configuration. Challenging example problems are presented and discussed in order to demonstrate the feasibility of the present finite element method and investigate static non-linear behaviors of cable nets.

  • PDF

Swept Volumes Generated by Polyhedral Objects Through Screw Motions (스크류 운동을 하는 다면체의 스웹 볼륨 생성)

  • 김재정;정채봉;서경천;강민우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.4
    • /
    • pp.211-218
    • /
    • 2002
  • Swept volumes have been used in a wide variety of applications, and the literature contains much discussion of methods for computing the swept volumes in many situations. However, the commercially available CAD systems do not support the operations of generating the swept volumes enough to satisfy a variety of users' needs. In this paper, we present a new, simple and efficient algorithm for computing the swept volume of moving a polyhedron in 3-D region. The screw motion is used to describe the sweep motion of a polyhedron, because of its simplicity and computational advantages. The boundary of a swept volume is the result of combining the envelope surfaces and the partial boundaries at the initial and final position of a polyhedron. Some portions of these boundaries are inside the swept volume. We develop the algorithm to remove these interior portions. Then, to implement our algorithm, it is performed to integrate our program with the commercial CAD software, CATIA.

Depth Camera-Based Posture Discrimination and Motion Interpolation for Real-Time Human Simulation (실시간 휴먼 시뮬레이션을 위한 깊이 카메라 기반의 자세 판별 및 모션 보간)

  • Lee, Jinwon;Han, Jeongho;Yang, Jeongsam
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.1
    • /
    • pp.68-79
    • /
    • 2014
  • Human model simulation has been widely used in various industrial areas such as ergonomic design, product evaluation and characteristic analysis of work-related musculoskeletal disorders. However, the process of building digital human models and capturing their behaviors requires many costly and time-consuming fabrication iterations. To overcome the limitations of this expensive and time-consuming process, many studies have recently presented a markerless motion capture approach that reconstructs the time-varying skeletal motions from optical devices. However, the drawback of the markerless motion capture approach is that the phenomenon of occlusion of motion data occurs in real-time human simulation. In this study, we propose a systematic method of discriminating missing or inaccurate motion data due to motion occlusion and interpolating a sequence of motion frames captured by a markerless depth camera.

The influence of different support movements and heights of piers on the dynamic behavior of bridges -Part II: earthquake acting along the bridge axis

  • Raftoyiannis, I.G.;Konstantakopoulos, T.G.;Michaltsos, G.T.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.39-54
    • /
    • 2010
  • In this paper, a simple approach is presented for studying the dynamic response of multi-span steel bridges supported by pylons of different heights, subjected to earthquake motions acting along the axis of the bridge with spatial variations. The analysis is carried out using the modal analysis technique, while the solution of the integral-differential equations derived is obtained using the successive approximations technique. It was found that the height of piers and the quality of the foundation soil can affect significantly the dynamical behavior of the bridges studied. Illustrative examples are presented to highlight the points of concern and useful conclusions are gathered.

Method for Inference of Operators' Thoughts from Eye Movement Data in Nuclear Power Plants

  • Ha, Jun Su;Byon, Young-Ji;Baek, Joonsang;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.129-143
    • /
    • 2016
  • Sometimes, we need or try to figure out somebody's thoughts from his or her behaviors such as eye movement, facial expression, gestures, and motions. In safety-critical and complex systems such as nuclear power plants, the inference of operators' thoughts (understanding or diagnosis of a current situation) might provide a lot of opportunities for useful applications, such as development of an improved operator training program, a new type of operator support system, and human performance measures for human factor validation. In this experimental study, a novel method for inference of an operator's thoughts from his or her eye movement data is proposed and evaluated with a nuclear power plant simulator. In the experiments, about 80% of operators' thoughts can be inferred correctly using the proposed method.

The kinematics analysis of Discus throwing (원반던지기의 운동학적 분석)

  • Kim, Jong-In;Sun, Jae-Bok
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.29-47
    • /
    • 2003
  • This study is to analyze the kinematic variables in release motion of discuss throwing. For the matter, 5 people from the national team and collegiate discuss throwing in the year 2001 were chosen as the subjects and two S-VHS video cameras set in 60frames/sec were used for recording their motions. Coordinated raw positions data through digitizing are smoothing by butter-worth 's low-pass filtering method at a cut off frequency 6.0Hz. and the direct linear transformation(DLT) method was employed to obtain 3-D position coordinates. The conclusions were as follows; 1. The better record players showed the shorter approach time in the last support phase. 2. In the displacement CG, the better record players showed the shorter displacement in medial-lateral direction, and the longer displacement in horizontal direction. In the motion, the COG showed longer displacement vertical direction. 3. The better record players showed the faster horizontal velocity than vertical velocity in the release. 4. The better record players showed to take the posture of vertical axis in the release.

Dynamic response analysis of the caisson-type quay wall using the wavelet transform (웨이브렛 변환을 이용한 케이슨식 안벽의 동적응답해석)

  • Moon, Yong;Kim, Jae-Kwon;Shin, Hyun-Yang;Seok, Jeong-Woo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.74-81
    • /
    • 2003
  • During the 1995 Hyogoken-Nambu earthquake, many caisson-type quay walls in Kobe Port moved several meters towards the seaside due to liquefaction and subsequent ground flow, To investigate the mechanism of quay wall damage, we carried out the numerical simulation using the 2-D effective stress analysis. Input earthquake motions used for the analyses are original Dip wave and the component wave in each compact support of wavelet transformation. The results suggested that the shear failure occurred in the foundation soil underneath the caisson type quay wall due to the deformation of the caisson type quay wall.

  • PDF

Implementation of a Personal Exercise System for Growing Children using Kinect (키넥트를 이용한 성장기 아동을 위한 개인 운동 시스템 구현)

  • Kim, Yeon-Jun;Kim, Hyo-bin;Yeom, Yu-jin;Choi, Ye-jin;Lee, Sang-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.127-132
    • /
    • 2019
  • Exercising and stretching are essential for the growth of children, but recently, children's outdoor activities are limited due to social risks such as fine dust and child crime. It has increased the need for children's programs that can be safely and easily followed indoors. In this paper, we developed a system to induce and manage children's voluntary stretching to support growth. The system developed in this paper recognizes the child's stretching motions in real-time using Kinect to evaluate the match rate with the standard motions. The system gives users the results with a calendar and check stamp to provide voluntary motivation for the child and to provide parents with systematic management of the child's progress.

Design of Knee-Pelvis Joint in the Biped Robot for Shock Reduction and Gravity Compensation (충격 감소 및 중력 보상을 위한 이족보행로봇의 무릎-골반 관절 설계)

  • Kim, Young-Min;Kim, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.136-142
    • /
    • 2015
  • In the paper, a design method of knee and pelvis joint in the biped robot is proposed for shock absorption and gravity compensation. Similarly to the human's body, the knee joints of the biped robot support most body weight and get a shock from the landing motion of the foot on the floor. The torque of joint motor is also increased sharply to keep the balance of the robot. Knee and pelvis joints with the spring are designed to compensate the gravity force and reduce the contact shock of the robot. To verify the efficiency of the proposed design method, we develope a biped robot with the joint mechanism using springs. At first, we experiment with the developed robot on the static motions such as the bent-knee posture both without load and with load on the flat ground, and the balance posture on the incline plane. The current of knee joint is measured to analyze the impact force and energy consumption of the joint motors. Also, we observe the motor current of knee and pelvis joints for the walking motion of the biped robot. The current responses of joint motors show that the proposed method has an effect on shock reduction and gravity compensation, and improve the energy efficiency of walking motions for the biped robot.

Tiny Pores observed by HINODE/SOT

  • Cho, Kyung-Suk;Bong, Su-Chan;Chae, Jong-Chul;Kim, Yeon-Han;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.49.1-49.1
    • /
    • 2010
  • The study of pores, small penumbraless sunspots, can give us a chance to understand how strong magnetic fields interact with convective motions in the photosphere. For a better understanding of this interaction, we investigate the temporal variation of several tiny pores smaller than 2". These pores were observed by the Solar Optical Telescope (SOT) onboard Hinode on 2006 December 29. We have analyzed the high resolution spectropolarimetric (SP) data and the G-band filtergrams taken during the observation. Magnetic flux density and Doppler velocities of the pores are estimated by applying the center of gravity (COG) method to the SP data. The horizontal motions in and around the pores are tracked by adopting the Nonlinear Affine Velocity Estimator (NAVE) method to the G-band filter images. As results, we found the followings. (1) Darkness of pores is positively correlated with magnetic flux density. (2) Downflows always exist inside and around the pores. (3) The speed of downflows inside the pores is negatively correlated with their darkness. (4) The pores are surrounded by strong downflows. (5) Brightness changes of the pores are correlated with the divergence of mass flow (correlation coefficient > 0.9). (6) The pores in the growing phase are associated with the converging flow pattern and the pores in the decay phase with the diverging flow pattern. Our results support the idea that a pore grows as magnetic flux density increases due to the convergence of ambient mass flow and it decays with the decrease of the flux density due to the diverging mass flow.

  • PDF