• Title/Summary/Keyword: Supply System Components

Search Result 348, Processing Time 0.027 seconds

Implementation of Shipbuilding components and materials management system (선박부품 자재관리시스템 구축 방안)

  • Park, Doo-jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.909-910
    • /
    • 2012
  • Shipbuilding is an order made assembly production basically. To build a single vessel, it costs hundreds of thousands small and big parts and million tons of structural steel. From contract to delivery, It takes 2 years of time in general. Shipbuilding parts are supplied order made based in and out of the country. For the cost and efficiency issue, on-time supply of ship parts is critical. Thus, this study suggests the optimum material management system plan of ship components for the best result.

  • PDF

Overview of flexure-based compliant microgrippers

  • Aia, Wenji;Xu, Qingsong
    • Advances in robotics research
    • /
    • v.1 no.1
    • /
    • pp.1-19
    • /
    • 2014
  • Microgripper is an essential device in the micro-operation system. It can convert other types of energy into mechanical energy and produce clamp movement with required chucking force, which enables it a broad application prospect in the domain of tiny components' processing and assembly, biomedicine and optics, etc. The performance of a microgripper is dependent on its power supply, type of drive, mechanism structure, sensing components, and controller. This paper presents a state-of-the-art survey of recent development on flexure-based microgrippers. According to the drive type, the existing microgrippers can be mainly classified as electrostatic microgripper, electrothermal microgripper, electromagnetic microgripper, piezoelectric microgripper, and shape memory alloy microgripper. Additionally, some different mechanisms, sensors, and control methods that are used in microgripper system are reviewed. The key issue of how to choose those components in microgripper system design is also addressed.

A Study on the Pollution Sources of Simple water Supply Piped System using Statistical Analysis (통계적 분석을 이용한 간이급수시설의 오염원에 관한 연구)

  • 이홍근;김현용;백도현;김지영;이태호
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.2
    • /
    • pp.56-67
    • /
    • 1999
  • This study was performed to suggest the basic data and plans for the establishment of safe water supply plans in simple water supply piped system in the rural areas. In 4 different places, 24 points of water sources 36 points of taps from water sources were sampled. Of the whole 60 points, 55 points were ground water and 5 points were surface water. 14 items were measured for the analysis of water quality on each samples. The measured items were analyzed again by statistical method ; cluster analysis and principle components analysis. The results of this study are as followed. 1) In water quality analysis on water sources, 4 items, bacteria, E.coli, NH3-N and Fe exceed the standard. Of 24 points, 20 points(83%) on bacteria, 1 point(4%) on NH3-N and Fe exceed the standard. 2) In water quality analysis on near and remote taps, 4 items, bacteria, E.coli, NH3-N and Fe , exceed the standard. Of 36 points, 20 points (81%) on bactria, 1 pint(3%) on NH3-N and Fe exceed the standard. 3)Cluster analysis on water quality shows the differences by the kinds of water sources, geographical characteristics and distance from water sources. 4) Principle components analysis on ground water shows that Factor 1 and Factor 3 are natural fluctuation by the content of soil. Also, Factor 2 and Factor 4 are penetration of pollutants to underground. Therefore, it is needed to take deeper ground water in order to prevent from pollution in the areas which have ground water as water source . 5) Principle components analysis on surface water shows that Factor 1 is penetration of vacteria from surface to water source when rainfalls. Also, Factor 2 is fluctuation of water quality by the geographical characteristics. Therefore, the counterplans against non-point pollution source must be taken. Filtration and disinfection facilities are needed in the areas which have surface water as water source.

  • PDF

Modeling and Simulation of O2/CH4 Gas Supply System of Afterburner for Fuel-rich Gas of Gas Generator (가스발생기의 연료과잉가스 후연소용 O2/CH4 가스 공급시스템 설계)

  • Wang, Seungwon;Lee, Kwangjin;Chung, Yonggahp;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.86-92
    • /
    • 2014
  • Combustion Chamber Test Facility (CCTF) to be constructed in Naro Space Center for re-burning the fuel-rich gas of gas generator have afterburner system. The afterburner system is supplied the Oxygon ($O_2$) gas and Methane ($CH_4$) gas to reduced the harmful exhaust gas. The detailed design for the planned CCTF afterburner system is simulated and analysed by AMESim program through the all of gas supply system components. Afterburner system is performed to verify the pipe size, orifice diameter, and gas supply conditions according to the total gas consumption from analysis of gas supply system.

Hydrogeochemistry and Statistical Analysis of Water Quality for Small Potable Water Supply System in Nonsan Area (논산지역 마을상수도 수질의 수리지화학 및 통계 분석)

  • Ko, Kyung-Seok;Ahn, Joo-Sung;Suk, Hee-Jun;Lee, Jin-Soo;Kim, Hyeong-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.72-84
    • /
    • 2008
  • This study was carried out to provide proper management plans for small portable water supply system in the Nonsan area through water quality monitoring, hydrogeochemical investigation and multivariate statistical analyses. Nonsan area is a typical rural area heavily depending on small water supply system for portable usage. Geology of the area is composed of granite dominantly along with metasedimentary rocks, gneiss and volcanic rocks. The monitoring results of small portable water supply system showed that 13-21% of groundwaters have exceeded the groundwater standard for drinking water, which is 5 to 8 times higher than the results from the whole country survey (2.5% in average). The major components exceeding the standard limits are nitrate-nitrogen, turbidity, total coliform, bacteria, fluoride and arsenic. High nitrate contamination observed at southern and northern parts of the study area seems to be caused by cultivation practices such as greenhouses. Although Ca and $HCO_3$ are dominant species in groundwater, concentrations of Na, Cl and $NO_3$ have increased at the granitic area indicating anthropogenic contamination. The groundwaters are divided into 2 groups, granite and metasedimentary rock/gneiss areas, with the second principal component presenting anthropogenic pollution by cultivation and residence from the principal components analysis. The discriminant analysis, with an error of 5.56% between initial classification and prediction on geology, can explain more clearly the geochemical characteristics of groundwaters by geology than the principal components analysis. Based on the obtained results, it is considered that the multivariate statistical analysis can be used as an effective method to analyze the integrated hydrogeochemical characteristics and to clearly discriminate variations of the groundwater quality. The research results of small potable water supply system in the study area showed that the groundwater chemistry is determined by the mixed influence of land use, soil properties, and topography which are controlled by geology. To properly control and manage small water supply systems for central and local governments, it is recommended to construct a total database system for groundwater environment including geology, land use, and topography.

Power Sharing and Cost Optimization of Hybrid Renewable Energy System for Academic Research Building

  • Singh, Anand;Baredar, Prashant
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1511-1518
    • /
    • 2017
  • Renewable energy hybrid systems look into the process of choosing the finest arrangement of components and their sizing with suitable operation approach to deliver effective, consistent and cost effective energy source. This paper presents hybrid renewable energy system (HRES) solar photovoltaic, downdraft biomass gasifier, and fuel cell based generation system. HRES electrical power to supply the electrical load demand of academic research building sited in $23^{\circ}12^{\prime}N$ latitude and $77^{\circ}24^{\prime}E$ longitude, India. Fuzzy logic programming discover the most effective capital and replacement value on components of HRES. The cause regarding fuzzy logic rule usage on HOMER pro (Hybrid optimization model for multiple energy resources) software program finds the optimum performance of HRES. HRES is designed as well as simulated to average energy demand 56.52 kWh/day with a peak energy demand 4.4 kW. The results shows the fuel cell and battery bank are the most significant modules of the HRES to meet load demand at late night and early morning hours. The total power generation of HRES is 23,794 kWh/year to the supply of the load demand is 20,631 kWh/year with 0% capacity shortage.

High Voltage Wiring System Evaluation Methode of FCEV (Fuel Cell Electric Vehicle) (수소연료전지 자동차용 고전압 배선 시스템 평가 기술 개발)

  • Lim, Ji-Seon;Lee, Jeong-Hun;Lee, Hyo-Jeong;Na, Joo-Ran
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.4
    • /
    • pp.330-336
    • /
    • 2012
  • FCEV uses 250 ~ 450 V instead of using 12 V battery. High voltage vehicle can cause electric shock, fire and explosion accident. Therefore, it has potential factors that can cause hazard of safety for users. United states of America and Europe legislate regulations such as ECE R100, FMVSS 305 for regulating electrical safety during driving or after collision. The company manufacturing high voltage components must do advanced R&D about Method for improving and confirming the safety of high voltage. We develop the specific hardware components of high voltage wiring system for the power train system and power supply system of Hyundai Motors FCEV. This paper shows test method of insulative performance for securing the electrical safety of high voltage components such as power cable, connectors and buss-bar, and proposals the guide line value for human safety of FCEV according to the test result of our development components.

50KW Photovoltaic Generation System for Model House Power Supply Using Alternative Energy (대체에너지 이용 시범주택 전원용 50KW 태양광발전시스템)

  • Park, J.M.;Park, J.H.;Kim, K.B.;Lee, K.Y.;Shin, S.H.;Cho, G.B.;Baek, H.N.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1335-1337
    • /
    • 2002
  • This paper presents experimental operation with utility interactive 50kw photovoltaic generation system. And that describe configuration of utility interactive photovoltaic system which power supply for dormitory. The status of photovoltaic generation system components and interconnection and safety equipment will be summarized. This paper discusses property operation state which system endure division of power for dormitory.

  • PDF

50kw Photovoltaic Generation System of Chosun university Dormitory for Model House Power Supply (시범주택 전원용 조선대 기숙사 50kW 태양광발전시스템의 운전특성)

  • Park J. M.;Kim K. B.;Lee K. Y.;Seo J. Y.;Cho G. B.;Baek H. N.
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.62-64
    • /
    • 2002
  • This paper presents experimental operation with utility invertactive 50kW photovoltaic generation system. And that describe configuration of utility interactive photovoltaic system which power supply for dormitory. The status of photovoltaic generation system components and interconnection and safety equipment will be summarized. This paper discusses property operation state which system endure division of power for dormitory.

  • PDF

Modeling and Validation of a Liquid Propellant Supply System in Steady States (액체 추진제 공급시스템의 정특성 모델링 및 검증)

  • Lee, Juyeon;Ki, Wonkeun;Huh, Hwanil;Roh, Tae-seong;Lee, Hyoung Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.143-154
    • /
    • 2020
  • The mathematical modeling applying experimental coefficients to a conventional model was validated through the hydraulic test for the components and the full system of a small-sized liquid rocket engine's propellant supply system. According to the simulations, pressures difference for the fluid resistance components and the pump were mainly predicted. In order to improve the modeling accuracy, the loss coefficients obtained by the empirical method were applied to the modeling. Based on the governing equation of the flow or the well known empirical equation, the method of deriving the empirical coefficients was summarized and the coefficients were presented for the commercial products used in this study. The prediction results by modeling were in good agreement with the experimental data. Through the comparison with the experimental data, the factors affecting the accuracy of the simulation were analyzed and improving methods of the accuracy was proposed.