• Title/Summary/Keyword: Supplementary cementitious materials (SCMs)

Search Result 23, Processing Time 0.03 seconds

Microstructural properties of hardened cement paste blended with coal fly ash, sugar mill lime sludge and rice hull ash

  • Opiso, Einstine M.;Sato, Tsutomu;Otake, Tsubasa
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.289-301
    • /
    • 2017
  • The synergistic interactions of supplementary cementitious materials (SCMs) with ordinary portland cement (OPC) in multi-blended systems could enhance the mechanical and durability properties of concrete and increase the amount of cement that can be replaced. In this study, the characteristics of the hydration products as well as paste microstructure of blended cement containing 20% coal fly ash, 10% rice hull ash and 10% sugar mill lime sludge in quaternary blended system was investigated. Portlandite content, hydration products, compressive strength, pore size distribution and microstructural architecture of hydrated blended cement pastes were examined. The quaternary blended cement paste showed lower compressive strength, reduced amount of Portlandite phases, and higher porosity compared to plain hardened cement paste. The interaction of SCMs with OPC influenced the hydration products, resulting to the formation of ettringite and monocarboaluminate phases. The blended cement paste also showed extensive calcium silicate hydrates and calcium aluminate silicate hydrates but unrefined compared to plain cement paste. In overall, the expected synergistic reaction was significantly hindered due to the low quality of supplementary cementitious materials used. Hence, pre-treatments of SCMs must be considered to enhance their reactivity as good quality SCMs can become limited in the future.

Fluidity Performance Evaluation of Low Viscosity Typed Superplasticizer for Cement-Based Materials Incorporating Supplementary Cementitious Materials (혼화재료를 치환한 시멘트 계열 재료에 대한 저점도형 고성능 감수제의 유동 성능 평가)

  • Son, Bae-Geun;Lee, Hyang-Seon;Lee, You-Jeong;Han, Dong-Yeop
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.219-228
    • /
    • 2019
  • The aim of the research is to provide a fundamental data of low viscosity typed superplasticizer (SP) on cement-based materials incorporating various supplementary cementitious materials (SCMs). As a relatively new product, low-viscosity typed SP has introduced for high performance concrete with high viscosity due to its high solid volume fraction with various SCMs. However, there are not enough research or reports on the performance of the low viscosity typed SP with cement-based materials incorporting SCMs. hence, in this research, for cement paste and mortar, fluidity and rheological properties were evaluated when the mixtures contained various SCMs such as fly ash, blast furnace slag, and silica fume. From the experiment conducted, it was checked that the low viscosity typed superplasticizer decreased the plastic viscosity of the mixture as well as the yield stress. From the results of this research, it is expected to contribute on introduction of new type SP for high performance concrete or high-viscous cementitious materials.

Degradation of Cement Mortar with Supplementary Cementitious Materials Submerged in Various Oils (각종 유지류에 침지된 혼화재 치환 시멘트 모르타르의 열화특성)

  • Han, Cheon-Goo;Hwang, Chan-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.137-143
    • /
    • 2017
  • There has been a number of research on concrete durability. specially, as a research on chemical ingression, the research on the degradation against acid, alkali, and sulfate has been conducted. On the other hand, for the research on oils, especially, the influence of various oils on cement mortar with Supplementary Cementitious Materials(SCMs) is not sufficiently studied. hence, in this research, the degradation of cement mortar incorporated fly ash and blast furnace slag is researched when the cement mortar is submerged in various oils. For the result of experiment, as the content of fatty acid in the oils, the degradation of cement mortar with SCMs was occurred more, and the cement mortar with SCMs suffered more degradation than the ordinary portland cement regarding the oil submerging.

Influence of fly ash and GGBFS on the pH value of cement mortar in different curing conditions

  • Shafigh, Payam;Yousuf, Sumra;Ibrahim, Zainah;Alsubari, Belal;Asadi, Iman
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.419-428
    • /
    • 2021
  • The pH of cement-based materials (CBMs) is an important factor for their durability, sustainability, and long service life. Currently, the use of supplementary cementitious materials (SCMs) is becoming mandatory due to economic, environmental, and sustainable issues. There is a decreasing trend in pH of CBMs due to incorporation of SCMs. The determination of numerical values of pH is very important for various low and high volume SCMs blended cement mortars for the better understanding of different defects and durability issues during their service life. In addition, the effect of cement hydration and pozzolanic reaction of SCMs on the pH should be determined at initial and later ages. In this study, the effect of low and high-volume fly ash (FA) and ground granulated ballast furnace slag (GGBFS) cement mortars in different curing conditions on their pH values has been determined. Thermal gravimetric analysis (TGA) was carried out to support the findings from pH measurements. In addition, thermal conductivity (k-value) and strength activity indices of these cement mortars were discussed. The results showed that pH values of all blended cement mortars were less than ordinary Portland cement (OPC) mortar in all curing conditions used. There was a decreasing tendency in pH of all mortars with passage of time. In addition, the pH of cement mortars was not only dependent on the quantity of Ca(OH)2. The effect of adding SCMs on the pH value of cement mortar should be monitored and measured for both short and long terms.

Characteristics of early strength development of blended cement according to the addition of C-S-H based Hardening acceleration (C-S-H계 조강제 첨가에 따른 혼합시멘트의 조기 강도 발현 특성)

  • An, Tae-Yun;Ra, Jeong-Min;Park, Jun-Hyung;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.127-128
    • /
    • 2022
  • In order to realize carbon neutrality in the international society, research on supplementary cementitious materials(SCMs) has been actively conducted as a way to reduce carbon dioxide emissions in the cement industry. However, the use of SCMs causes problems of initial hydration delay and strength reduction due to the reduction of tricalcium silicate(C3S) in the cement clinker. Therefore, in this study, the initial hydration and basic characteristics of cement mortar were confirmed by adding a C-S-H based hardening acceleration to blended cement mixed with Portland cement, blast furnace slag, fly ash, and limestone power. As a result of the heat of hydration and compressive strength test, it was confirmed that when hardening acceleration was added, the initial reactivity was high, so the heat of hydration was promoted, and the initial strength was increased. It is considered to be due to C-S-H seeding effect. Therefore, it is judged that the use of C-S-H based hardening acceleration can supplement the problem of initial hydration delay of blended cement in Korea.

  • PDF

A Study on the Basic Properties of Cement Mortar Using Limestone Powder (석회석 미분말을 사용한 시멘트 모르타르의 기초특성에 관한 연구)

  • Kang, In-Gyu;La, Jung-Min;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.19-20
    • /
    • 2022
  • Portland Limestone Cement (PLC) is a blended cement using limestone powder as SCMs (Supplementary Cementitious Materials), and is currently regarded as an essential means for achieving carbon neutral in the cement industry. This study was performed to investigate the fresh and hardened properties of cement mortar according to the fineness and replacement ratio of limestone powder. As a result, the compressive strength of mortar used high blaine limestone powder were equivalent level of that of OPC.

  • PDF

Waste glass powder and its effect on the fresh and mechanical properties of concrete: A state of the art review

  • He, Zhi-hai;Yang, Ying;Zeng, Hao;Chang, Jing-yu;Shi, Jin-yan;Liu, Bao-ju
    • Advances in concrete construction
    • /
    • v.10 no.5
    • /
    • pp.417-429
    • /
    • 2020
  • Waste glass is a global solid waste with huge reserves. The discarded waste glass has caused a series of problems such as resource waste and environmental pollution, so it is urgent to recycle waste glass with high replacement level. Glass powder (GP), as a supplementary cementitious material (SCM), used in cement-based materials has already become one of the important ways to recycle waste glass mainly attributed to its pozzolanic reaction and filling effect, especially to the suppressed ASR expansion. This paper demonstrates an overview of the properties of GP and its effect on the fresh and mechanical properties of cement-based materials. The study found that the influence of GP on the performance of cement-based materials mainly depends on its content, particle size, color and type, curing conditions, and other SCMs. Finally, based on the problems involved in the investigation of concrete containing GP, some corresponding suggestions and efforts are given to further guide the utilization of GP in cement-based materials.

Influence of Various Replacing Ratios of SCMs on Properties of High Fluidity Concrete (광물질 혼화재의 치환율 변화가 고유동 콘크리트의 특성에 미치는 영향)

  • Han, In-Deok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.12
    • /
    • pp.165-172
    • /
    • 2019
  • The aim of the research is to evaluate the influence of various replacing ratios of supplementary cementitious materials(SCMs) such as fly ash(FA), blast furnace slag(BS), and both FA and BS on general properties including segregation resistance as a powder based high fluidity concrete of normal strength grade with water-to-cement ratio 0.40. Specifically, by replacing the SCMs with low density powders, it was assessed that the decreased segregation resistance due to the decreased viscosity by J-ring test. As a result of the experiment, from the general test, the mixtures with SCMs showed increased segregation resistance by increased viscosity as the references, while some segregation was shown from J-ring test due to the decreased density of fresh state mixture related with the capacity of delivering coarse aggregate.

Analysis of the influence of low viscosity typed high range water reducer on rheological properties high performance cement paste depending on SCM types and contents (저점도형 고성능 감수제가 다양한 혼화재 종류 및 치환량 조건에서 고성능 시멘트 페이스트의 레올로지 성능에 미치는 영향 분석)

  • Jeon, Jong-Woon;Son, Bae-Geun;Lee, Hyang-Sun;Han, Dong-Yeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.46-47
    • /
    • 2018
  • High performance concrete with low water-to-cement ratio has been widely used with increased demand of high rising buildings and huge scaled structures. Additionally, for high performance concrete, various SCMs are replaced to improve its performance from fresh state to hardened state. With the drawback of increased viscosity of the concrete mixture for high performance concrete, low-viscosity typed high range water reducer is the relatively new admixture. Therefore, as a goal of the research, under using various SCMs with wide range of content, the performance of low-viscosity typed high range water reducer was evaluated. Especially, in this research, the influence of low-viscosity typed high range water reducer on rheological properties including plastic viscosity and yield stress were assessed. As a result of the research, it is expected to provide a fundamental information of low -viscosity typed high ranged water reducer on high performance concrete with various conditions of SCMs.

  • PDF

Prediction of chloride binding isotherms for blended cements

  • Ye, Hailong;Jin, Xianyu;Chen, Wei;Fu, Chuanqing;Jin, Nanguo
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.655-672
    • /
    • 2016
  • A predictive model for chloride binding isotherms of blended cements with various supplementary cementitious materials (SCMs) was established in this work. Totally 560 data points regarding the chloride binding isotherms of 106 various cements were collected from literature. The total amount of bound chloride for each mixture was expressed a combinational function of the predicted phase assemblage and binding isotherms of various hydrated phases. New quantitative expressions regarding the chloride binding isotherms of calcium-silicate-hydrate (C-S-H), AFm, and hydrotalcite phases were provided. New insights about the roles of SCMs on binding capabilities of ordinary portland cements (OPC) were discussed. The proposed model was verified using separate data from different sources and was shown to be reasonably accurate.